This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
In the field of machine reading comprehension (MRC), existing systems have surpassed the average performance of human beings in many tasks like SQuAD. However, there is still a long way to go when it comes to logical reasoning. Although some methods for it have been put forward, they either are designed in a quite complicated way or rely too much on external structures. In this paper, we proposed IDOL (InDicator-Oriented Logic Pre-training), an easy-to-understand but highly effective further pre-training task which logically strengthens the pre-trained models with the help of 6 types of logical indicators and a logically rich dataset LoGic Pre-training (LGP). IDOL achieves state-of-the-art performance on ReClor and LogiQA, the two most representative benchmarks in logical reasoning MRC, and is proven to be capable of generalizing to different pre-trained models and other types of MRC benchmarks like RACE and SQuAD 2.0 while keeping competitive general language understanding ability through testing on tasks in GLUE. Besides, at the beginning of the era of large language models, we take several of them like ChatGPT into comparison and find that IDOL still shows its advantage.
Pre-trained language models achieve superior performance but are computationally expensive. Techniques such as pruning and knowledge distillation have been developed to reduce their sizes and latencies. In this work, we propose a structured pruning method GRAIN (gradient-based intra-attention pruning), which performs task-specific pruning with knowledge distillation and yields highly effective models. Different from common approaches that prune each attention head as a whole, GRAIN inspects and prunes intra-attention structures, which greatly expands the structure search space and enables more flexible models. We also propose a gradient separation strategy that reduces the interference of distillation on pruning for a better combination of the two approaches. Experiments on GLUE, SQuAD, and CoNLL 2003 show that GRAIN notably outperforms other methods, especially in the high sparsity regime, and achieves 6 7x speedups while maintaining 93% 99% performance. Under extreme compression where only 3% transformer weights remain, the pruned model is still competitive compared to larger models.
Multilingual pre-trained language models have shown impressive performance on cross-lingual tasks. It greatly facilitates the applications of natural language processing on low-resource languages. However, there are still some languages that the current multilingual models do not perform well on. In this paper, we propose CINO (Chinese Minority Pre-trained Language Model), a multilingual pre-trained language model for Chinese minority languages. It covers Standard Chinese, Yue Chinese, and six other ethnic minority languages. To evaluate the cross-lingual ability of the multilingual model on ethnic minority languages, we collect documents from Wikipedia and news websites, and construct two text classification datasets, WCM (Wiki-Chinese-Minority) and CMNews (Chinese-Minority-News). We show that CINO notably outperforms the baselines on various classification tasks. The CINO model and the datasets are publicly available at http://cino.hfl-rc.com.
The same multi-word expressions may have different meanings in different sentences. They can be mainly divided into two categories, which are literal meaning and idiomatic meaning. Non-contextual-based methods perform poorly on this problem, and we need contextual embedding to understand the idiomatic meaning of multi-word expressions correctly. We use a pre-trained language model, which can provide a context-aware sentence embedding, to detect whether multi-word expression in the sentence is idiomatic usage.
This paper describes our system designed for SemEval-2022 Task 8: Multilingual News Article Similarity. We proposed a linguistics-inspired model trained with a few task-specific strategies. The main techniques of our system are: 1) data augmentation, 2) multi-label loss, 3) adapted R-Drop, 4) samples reconstruction with the head-tail combination. We also present a brief analysis of some negative methods like two-tower architecture. Our system ranked 1st on the leaderboard while achieving a Pearson’s Correlation Coefficient of 0.818 on the official evaluation set.
Pre-trained language models have been prevailed in natural language processing and become the backbones of many NLP tasks, but the demands for computational resources have limited their applications. In this paper, we introduce TextPruner, an open-source model pruning toolkit designed for pre-trained language models, targeting fast and easy model compression. TextPruner offers structured post-training pruning methods, including vocabulary pruning and transformer pruning, and can be applied to various models and tasks. We also propose a self-supervised pruning method that can be applied without the labeled data. Our experiments with several NLP tasks demonstrate the ability of TextPruner to reduce the model size without re-training the model.
Multilingual pre-trained models have achieved remarkable performance on cross-lingual transfer learning. Some multilingual models such as mBERT, have been pre-trained on unlabeled corpora, therefore the embeddings of different languages in the models may not be aligned very well. In this paper, we aim to improve the zero-shot cross-lingual transfer performance by proposing a pre-training task named Word-Exchange Aligning Model (WEAM), which uses the statistical alignment information as the prior knowledge to guide cross-lingual word prediction. We evaluate our model on multilingual machine reading comprehension task MLQA and natural language interface task XNLI. The results show that WEAM can significantly improve the zero-shot performance.
Adversarial training (AT) as a regularization method has proved its effectiveness on various tasks. Though there are successful applications of AT on some NLP tasks, the distinguishing characteristics of NLP tasks have not been exploited. In this paper, we aim to apply AT on machine reading comprehension (MRC) tasks. Furthermore, we adapt AT for MRC tasks by proposing a novel adversarial training method called PQAT that perturbs the embedding matrix instead of word vectors. To differentiate the roles of passages and questions, PQAT uses additional virtual P/Q-embedding matrices to gather the global perturbations of words from passages and questions separately. We test the method on a wide range of MRC tasks, including span-based extractive RC and multiple-choice RC. The results show that adversarial training is effective universally, and PQAT further improves the performance.
Knowledge graph inference has been studied extensively due to its wide applications. It has been addressed by two lines of research, i.e., the more traditional logical rule reasoning and the more recent knowledge graph embedding (KGE). Several attempts have been made to combine KGE and logical rules for better knowledge graph inference. Unfortunately, they either simply treat logical rules as additional constraints into KGE loss or use probabilistic model to approximate the exact logical inference (i.e., MAX-SAT). Even worse, both approaches need to sample ground rules to tackle the scalability issue, as the total number of ground rules is intractable in practice, making them less effective in handling logical rules. In this paper, we propose a novel framework UniKER to address these challenges by restricting logical rules to be definite Horn rules, which can fully exploit the knowledge in logical rules and enable the mutual enhancement of logical rule-based reasoning and KGE in an extremely efficient way. Extensive experiments have demonstrated that our approach is superior to existing state-of-the-art algorithms in terms of both efficiency and effectiveness.
In this paper, we introduce TextBrewer, an open-source knowledge distillation toolkit designed for natural language processing. It works with different neural network models and supports various kinds of supervised learning tasks, such as text classification, reading comprehension, sequence labeling. TextBrewer provides a simple and uniform workflow that enables quick setting up of distillation experiments with highly flexible configurations. It offers a set of predefined distillation methods and can be extended with custom code. As a case study, we use TextBrewer to distill BERT on several typical NLP tasks. With simple configurations, we achieve results that are comparable with or even higher than the public distilled BERT models with similar numbers of parameters.
Owing to the continuous efforts by the Chinese NLP community, more and more Chinese machine reading comprehension datasets become available. To add diversity in this area, in this paper, we propose a new task called Sentence Cloze-style Machine Reading Comprehension (SC-MRC). The proposed task aims to fill the right candidate sentence into the passage that has several blanks. We built a Chinese dataset called CMRC 2019 to evaluate the difficulty of the SC-MRC task. Moreover, to add more difficulties, we also made fake candidates that are similar to the correct ones, which requires the machine to judge their correctness in the context. The proposed dataset contains over 100K blanks (questions) within over 10K passages, which was originated from Chinese narrative stories. To evaluate the dataset, we implement several baseline systems based on the pre-trained models, and the results show that the state-of-the-art model still underperforms human performance by a large margin. We release the dataset and baseline system to further facilitate our community. Resources available through https://github.com/ymcui/cmrc2019