This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Multiple-choice visual question answering (MC VQA) requires an answer picked from a list of distractors, based on a question and an image. This research has attracted wide interest from the fields of visual question answering, visual question generation, and visual distractor generation. However, these fields still stay in their own territories, and how to jointly generate meaningful questions, correct answers, and challenging distractors remains unexplored. In this paper, we introduce a novel task, Visual Question-Answer-Distractors Generation (VQADG), which can bridge this research gap as well as take as a cornerstone to promote existing VQA models. Specific to the VQADG task, we present a novel framework consisting of a vision-and-language model to encode the given image and generate QADs jointly, and contrastive learning to ensure the consistency of the generated question, answer, and distractors. Empirical evaluations on the benchmark dataset validate the performance of our model in the VQADG task.
Accurate knowledge selection is critical in knowledge-grounded dialogue systems. Towards a closer look at it, we offer a novel perspective to organize existing literature, i.e., knowledge selection coupled with, after, and before generation. We focus on the third under-explored category of study, which can not only select knowledge accurately in advance, but has the advantage to reduce the learning, adjustment, and interpretation burden of subsequent response generation models, especially LLMs. We propose \tt{GATE}, a generator-agnostic knowledge selection method, to prepare knowledge for subsequent response generation models by selecting context-related knowledge among different knowledge structures and variable knowledge requirements. Experimental results demonstrate the superiority of \tt{GATE}, and indicate that knowledge selection before generation is a lightweight yet effective way to facilitate LLMs (e.g., ChatGPT) to generate more informative responses.
This research addresses the challenges of Cross-Lingual Summarization (CLS) in low-resource scenarios and over imbalanced multilingual data. Existing CLS studies mostly resort to pipeline frameworks or multi-task methods in bilingual settings. However, they ignore the data imbalance in multilingual scenarios and do not utilize the high-resource monolingual summarization data. In this paper, we propose the Aligned CROSs-lingual Summarization (ACROSS) model to tackle these issues. Our framework aligns low-resource cross-lingual data with high-resource monolingual data via contrastive and consistency loss, which help enrich low-resource information for high-quality summaries. In addition, we introduce a data augmentation method that can select informative monolingual sentences, which facilitates a deep exploration of high-resource information and introduce new information for low-resource languages. Experiments on the CrossSum dataset show that ACROSS outperforms baseline models and obtains consistently dominant performance on 45 language pairs.
With the scale and capacity of pretrained models growing rapidly, parameter-efficient language model tuning has emerged as a popular paradigm for solving various NLP and Vision-and-Language (V&L) tasks. In this paper, we design a unified parameter-efficient multitask learning framework that works effectively on both NLP and V&L tasks. In particular, we use a shared hypernetwork that takes trainable hyper-embeddings and visual modality as input, and outputs weights for different modules in a pretrained language model, such as the parameters inserted into multi-head attention blocks (i.e., prefix-tuning) and feed-forward blocks (i.e., adapter-tuning.). Our proposed framework adds fewer trainable parameters in multi-task learning while achieving superior performances and transfer ability compared to state-of-the-art methods. Empirical results on the GLUE benchmark and multiple V&L tasks confirm the effectiveness of our framework.
To fulfill complex user requirements in a situated conversational scenario, the agent needs to conduct step-by-step multi-modal logic reasoning, which includes locating objects, querying information and searching objects. However, existing methods omit this multi-step procedure and therefore constitutes the risk of shortcuts when making predictions. For example, they may directly copy the information from the dialogue history or simply use the textual description without perform visual reasoning. To address this issue and further boost the system performance, we apply the dual process theory to plug a reasoner into the original transformer based model for step-by-step reasoning. When system 2 completes multi-step reasoning, its output is regarded as final prediction. Our proposed method achieved the 1st rank on the summing scores across all four DSTC-11 SIMMC 2.1 sub-tasks.
Current Question Answering over Knowledge Graphs (KGQA) task mainly focuses on performing answer reasoning upon KGs with binary facts. However, it neglects the n-ary facts, which contain more than two entities. In this work, we highlight a more challenging but under-explored task: n-ary KGQA, i.e., answering n-ary facts questions upon n-ary KGs. Nevertheless, the multi-hop reasoning framework popular in binary KGQA task is not directly applicable on n-ary KGQA. We propose two feasible improvements: 1) upgrade the basic reasoning unit from entity or relation to fact, and 2) upgrade the reasoning structure from chain to tree. Therefore, we propose a novel fact-tree reasoning framework, FacTree, which integrates the above two upgrades. FacTree transforms the question into a fact tree and performs iterative fact reasoning on the fact tree to infer the correct answer. Experimental results on the n-ary KGQA dataset we constructed and two binary KGQA benchmarks demonstrate the effectiveness of FacTree compared with state-of-the-art methods.
Empathetic dialogue assembles emotion understanding, feeling projection, and appropriate response generation. Existing work for empathetic dialogue generation concentrates on the two-party conversation scenario. Multi-party dialogues, however, are pervasive in reality. Furthermore, emotion and sensibility are typically confused; a refined empathy analysis is needed for comprehending fragile and nuanced human feelings. We address these issues by proposing a novel task called Multi-Party Empathetic Dialogue Generation in this study. Additionally, a Static-Dynamic model for Multi-Party Empathetic Dialogue Generation, SDMPED, is introduced as a baseline by exploring the static sensibility and dynamic emotion for the multi-party empathetic dialogue learning, the aspects that help SDMPED achieve the state-of-the-art performance.
Procedural Multimodal Documents (PMDs) organize textual instructions and corresponding images step by step. Comprehending PMDs and inducing their representations for the downstream reasoning tasks is designated as Procedural MultiModal Machine Comprehension (M3C). In this study, we approach Procedural M3C at a fine-grained level (compared with existing explorations at a document or sentence level), that is, entity. With delicate consideration, we model entity both in its temporal and cross-modal relation and propose a novel Temporal-Modal Entity Graph (TMEG). Specifically, graph structure is formulated to capture textual and visual entities and trace their temporal-modal evolution. In addition, a graph aggregation module is introduced to conduct graph encoding and reasoning. Comprehensive experiments across three Procedural M3C tasks are conducted on a traditional dataset RecipeQA and our new dataset CraftQA, which can better evaluate the generalization of TMEG.
In the field of dialogue summarization, due to the lack of training data, it is often difficult for supervised summary generation methods to learn vital information from dialogue context with limited data. Several attempts on unsupervised summarization for text by leveraging semantic information solely or auto-encoder strategy (i.e., sentence compression), it however cannot be adapted to the dialogue scene due to the limited words in utterances and huge gap between the dialogue and its summary. In this study, we propose a novel unsupervised strategy to address this challenge, which roots from the hypothetical foundation that a superior summary approximates a replacement of the original dialogue, and they are roughly equivalent for auxiliary (self-supervised) tasks, e.g., dialogue generation. The proposed strategy RepSum is applied to generate both extractive and abstractive summary with the guidance of the followed nˆth utterance generation and classification tasks. Extensive experiments on various datasets demonstrate the superiority of the proposed model compared with the state-of-the-art methods.
Multimodal summarization becomes increasingly significant as it is the basis for question answering, Web search, and many other downstream tasks. However, its learning materials have been lacking a holistic organization by integrating resources from various modalities, thereby lagging behind the research progress of this field. In this study, we release a full-scale multimodal dataset comprehensively gathering documents, summaries, images, captions, videos, audios, transcripts, and titles in English from CNN and Daily Mail. To our best knowledge, this is the first collection that spans all modalities and nearly comprises all types of materials available in this community. In addition, we devise a baseline model based on the novel dataset, which employs a newly proposed Jump-Attention mechanism based on transcripts. The experimental results validate the important assistance role of the external information for multimodal summarization.
Knowledge graphs are essential for numerous downstream natural language processing applications, but are typically incomplete with many facts missing. This results in research efforts on multi-hop reasoning task, which can be formulated as a search process and current models typically perform short distance reasoning. However, the long-distance reasoning is also vital with the ability to connect the superficially unrelated entities. To the best of our knowledge, there lacks a general framework that approaches multi-hop reasoning in mixed long-short distance reasoning scenarios. We argue that there are two key issues for a general multi-hop reasoning model: i) where to go, and ii) when to stop. Therefore, we propose a general model which resolves the issues with three modules: 1) the local-global knowledge module to estimate the possible paths, 2) the differentiated action dropout module to explore a diverse set of paths, and 3) the adaptive stopping search module to avoid over searching. The comprehensive results on three datasets demonstrate the superiority of our model with significant improvements against baselines in both short and long distance reasoning scenarios.
End-to-end speech translation poses a heavy burden on the encoder because it has to transcribe, understand, and learn cross-lingual semantics simultaneously. To obtain a powerful encoder, traditional methods pre-train it on ASR data to capture speech features. However, we argue that pre-training the encoder only through simple speech recognition is not enough, and high-level linguistic knowledge should be considered. Inspired by this, we propose a curriculum pre-training method that includes an elementary course for transcription learning and two advanced courses for understanding the utterance and mapping words in two languages. The difficulty of these courses is gradually increasing. Experiments show that our curriculum pre-training method leads to significant improvements on En-De and En-Fr speech translation benchmarks.
Attention plays a key role in the improvement of sequence-to-sequence-based document summarization models. To obtain a powerful attention helping with reproducing the most salient information and avoiding repetitions, we augment the vanilla attention model from both local and global aspects. We propose attention refinement unit paired with local variance loss to impose supervision on the attention model at each decoding step, and we also propose a global variance loss to optimize the attention distributions of all decoding steps from the global perspective. The performances on CNN/Daily Mail dataset verify the effectiveness of our methods.
Learning social media content is the basis of many real-world applications, including information retrieval and recommendation systems, among others. In contrast with previous works that focus mainly on single modal or bi-modal learning, we propose to learn social media content by fusing jointly textual, acoustic, and visual information (JTAV). Effective strategies are proposed to extract fine-grained features of each modality, that is, attBiGRU and DCRNN. We also introduce cross-modal fusion and attentive pooling techniques to integrate multi-modal information comprehensively. Extensive experimental evaluation conducted on real-world datasets demonstrate our proposed model outperforms the state-of-the-art approaches by a large margin.
Enabling a mechanism to understand a temporal story and predict its ending is an interesting issue that has attracted considerable attention, as in case of the ROC Story Cloze Task (SCT). In this paper, we develop a multi-attention-based neural network (MANN) with well-designed optimizations, like Highway Network, and concatenated features with embedding representations into the hierarchical neural network model. Considering the particulars of the specific task, we thoughtfully extend MANN with external knowledge resources, exceeding state-of-the-art results obviously. Furthermore, we develop a thorough understanding of our model through a careful hand analysis on a subset of the stories. We identify what traits of MANN contribute to its outperformance and how external knowledge is obtained in such an ending prediction task.