Yujing Wang


2023

pdf
UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation
Daixuan Cheng | Shaohan Huang | Junyu Bi | Yuefeng Zhan | Jianfeng Liu | Yujing Wang | Hao Sun | Furu Wei | Weiwei Deng | Qi Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) are popular for their impressive abilities, but the need for model-specific fine-tuning or task-specific prompt engineering can hinder their generalization. We propose UPRISE (Universal Prompt Retrieval for Improving zero-Shot Evaluation), which tunes a lightweight and versatile retriever that automatically retrieves prompts for a given zero-shot task input. Specifically, we demonstrate universality in a cross-task and cross-model scenario: the retriever is tuned on diverse tasks, but tested on unseen task types; we use a small frozen LLM, GPT-Neo-2.7B, for tuning the retriever, but test the retriever on different LLMs of much larger scales, such as BLOOM-7.1B, OPT-66B and GPT3-175B. Additionally, we show that UPRISE mitigates the hallucination problem in our experiments with ChatGPT, suggesting its potential to improve even the strongest LLMs. Our model and code are available at https://github.com/microsoft/LMOps.

pdf
To Copy Rather Than Memorize: A Vertical Learning Paradigm for Knowledge Graph Completion
Rui Li | Xu Chen | Chaozhuo Li | Yanming Shen | Jianan Zhao | Yujing Wang | Weihao Han | Hao Sun | Weiwei Deng | Qi Zhang | Xing Xie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Embedding models have shown great power in knowledge graph completion (KGC) task. By learning structural constraints for each training triple, these methods implicitly memorize intrinsic relation rules to infer missing links. However, this paper points out that the multi-hop relation rules are hard to be reliably memorized due to the inherent deficiencies of such implicit memorization strategy, making embedding models underperform in predicting links between distant entity pairs. To alleviate this problem, we present Vertical Learning Paradigm (VLP), which extends embedding models by allowing to explicitly copy target information from related factual triples for more accurate prediction. Rather than solely relying on the implicit memory, VLP directly provides additional cues to improve the generalization ability of embedding models, especially making the distant link prediction significantly easier. Moreover, we also propose a novel relative distance based negative sampling technique (ReD) for more effective optimization. Experiments demonstrate the validity and generality of our proposals on two standard benchmarks. Our code is available at https://github.com/rui9812/VLP.

2022

pdf
Enhancing Self-Attention with Knowledge-Assisted Attention Maps
Jiangang Bai | Yujing Wang | Hong Sun | Ruonan Wu | Tianmeng Yang | Pengfei Tang | Defu Cao | Mingliang Zhang1 | Yunhai Tong | Yaming Yang | Jing Bai | Ruofei Zhang | Hao Sun | Wei Shen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Large-scale pre-trained language models have attracted extensive attentions in the research community and shown promising results on various tasks of natural language processing. However, the attention maps, which record the attention scores between tokens in self-attention mechanism, are sometimes ineffective as they are learned implicitly without the guidance of explicit semantic knowledge. Thus, we aim to infuse explicit external knowledge into pre-trained language models to further boost their performance. Existing works of knowledge infusion largely depend on multi-task learning frameworks, which are inefficient and require large-scale re-training when new knowledge is considered. In this paper, we propose a novel and generic solution, KAM-BERT, which directly incorporates knowledge-generated attention maps into the self-attention mechanism. It requires only a few extra parameters and supports efficient fine-tuning once new knowledge is added. KAM-BERT achieves consistent improvements on various academic datasets for natural language understanding. It also outperforms other state-of-the-art methods which conduct knowledge infusion into transformer-based architectures. Moreover, we apply our model to an industry-scale ad relevance application and show its advantages in the real-world scenario.

pdf
Stylized Knowledge-Grounded Dialogue Generation via Disentangled Template Rewriting
Qingfeng Sun | Can Xu | Huang Hu | Yujing Wang | Jian Miao | Xiubo Geng | Yining Chen | Fei Xu | Daxin Jiang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Current Knowledge-Grounded Dialogue Generation (KDG) models specialize in producing rational and factual responses. However, to establish long-term relationships with users, the KDG model needs the capability to generate responses in a desired style or attribute. Thus, we study a new problem: Stylized Knowledge-Grounded Dialogue Generation (SKDG). It presents two challenges: (1) How to train a SKDG model where no <context, knowledge, stylized response> triples are available. (2) How to cohere with context and preserve the knowledge when generating a stylized response. In this paper, we propose a novel disentangled template rewriting (DTR) method which generates responses via combing disentangled style templates (from monolingual stylized corpus) and content templates (from KDG corpus). The entire framework is end-to-end differentiable and learned without supervision. Extensive experiments on two benchmarks indicate that DTR achieves a significant improvement on all evaluation metrics compared with previous state-of-the-art stylized dialogue generation methods. Besides, DTR achieves comparable performance with the state-of-the-art KDG methods in standard KDG evaluation setting.

pdf
Multimodal Dialogue Response Generation
Qingfeng Sun | Yujing Wang | Can Xu | Kai Zheng | Yaming Yang | Huang Hu | Fei Xu | Jessica Zhang | Xiubo Geng | Daxin Jiang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Responsing with image has been recognized as an important capability for an intelligent conversational agent. Yet existing works only focus on exploring the multimodal dialogue models which depend on retrieval-based methods, but neglecting generation methods. To fill in the gaps, we first present a new task: multimodal dialogue response generation (MDRG) - given the dialogue history, one model needs to generate a text sequence or an image as response. Learning such a MDRG model often requires multimodal dialogues containing both texts and images which are difficult to obtain. Motivated by the challenge in practice, we consider MDRG under a natural assumption that only limited training examples are available. In such a low-resource setting, we devise a novel conversational agent, Divter, in order to isolate parameters that depend on multimodal dialogues from the entire generation model. By this means, the major part of the model can be learned from a large number of text-only dialogues and text-image pairs respectively, then the whole parameters can be well fitted using the limited training examples. Extensive experiments demonstrate our method achieves state-of-the-art results in both automatic and human evaluation, and can generate informative text and high-resolution image responses.

2021

pdf
Syntax-BERT: Improving Pre-trained Transformers with Syntax Trees
Jiangang Bai | Yujing Wang | Yiren Chen | Yaming Yang | Jing Bai | Jing Yu | Yunhai Tong
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Pre-trained language models like BERT achieve superior performances in various NLP tasks without explicit consideration of syntactic information. Meanwhile, syntactic information has been proved to be crucial for the success of NLP applications. However, how to incorporate the syntax trees effectively and efficiently into pre-trained Transformers is still unsettled. In this paper, we address this problem by proposing a novel framework named Syntax-BERT. This framework works in a plug-and-play mode and is applicable to an arbitrary pre-trained checkpoint based on Transformer architecture. Experiments on various datasets of natural language understanding verify the effectiveness of syntax trees and achieve consistent improvement over multiple pre-trained models, including BERT, RoBERTa, and T5.

2020

pdf
LadaBERT: Lightweight Adaptation of BERT through Hybrid Model Compression
Yihuan Mao | Yujing Wang | Chufan Wu | Chen Zhang | Yang Wang | Quanlu Zhang | Yaming Yang | Yunhai Tong | Jing Bai
Proceedings of the 28th International Conference on Computational Linguistics

BERT is a cutting-edge language representation model pre-trained by a large corpus, which achieves superior performances on various natural language understanding tasks. However, a major blocking issue of applying BERT to online services is that it is memory-intensive and leads to unsatisfactory latency of user requests, raising the necessity of model compression. Existing solutions leverage the knowledge distillation framework to learn a smaller model that imitates the behaviors of BERT. However, the training procedure of knowledge distillation is expensive itself as it requires sufficient training data to imitate the teacher model. In this paper, we address this issue by proposing a tailored solution named LadaBERT (Lightweight adaptation of BERT through hybrid model compression), which combines the advantages of different model compression methods, including weight pruning, matrix factorization and knowledge distillation. LadaBERT achieves state-of-the-art accuracy on various public datasets while the training overheads can be reduced by an order of magnitude.