Yue Zhou


2024

pdf
ImplicitAVE: An Open-Source Dataset and Multimodal LLMs Benchmark for Implicit Attribute Value Extraction
Henry Zou | Vinay Samuel | Yue Zhou | Weizhi Zhang | Liancheng Fang | Zihe Song | Philip Yu | Cornelia Caragea
Findings of the Association for Computational Linguistics ACL 2024

Existing datasets for attribute value extraction (AVE) predominantly focus on explicit attribute values while neglecting the implicit ones, lack product images, are often not publicly available, and lack an in-depth human inspection across diverse domains. To address these limitations, we present ImplicitAVE, the first, publicly available multimodal dataset for implicit attribute value extraction. ImplicitAVE, sourced from the MAVE dataset, is carefully curated and expanded to include implicit AVE and multimodality, resulting in a refined dataset of 68k training and 1.6k testing data across five domains. We also explore the application of multimodal large language models (MLLMs) to implicit AVE, establishing a comprehensive benchmark for MLLMs on the ImplicitAVE dataset. Six recent MLLMs with eleven variants are evaluated across diverse settings, revealing that implicit value extraction remains a challenging task for MLLMs. The contributions of this work include the development and release of ImplicitAVE, and the exploration and benchmarking of various MLLMs for implicit AVE, providing valuable insights and potential future research directions. Dataset and code are available at https://github.com/HenryPengZou/ImplicitAVE.

pdf
Paraphrase and Solve: Exploring and Exploiting the Impact of Surface Form on Mathematical Reasoning in Large Language Models
Yue Zhou | Yada Zhu | Diego Antognini | Yoon Kim | Yang Zhang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

This paper studies the relationship between the surface form of a mathematical problem and its solvability by large language models. We find that subtle alterations in the surface form can significantly impact the answer distribution and the solve rate, exposing the language model’s lack of robustness and sensitivity to the surface form in reasoning through complex problems. To improve mathematical reasoning performance, we propose Self-Consistency-over-Paraphrases (SCoP), which diversifies reasoning paths from specific surface forms of the problem. We evaluate our approach on four mathematics reasoning benchmarks over three large language models and show that SCoP improves mathematical reasoning performance over vanilla self-consistency, particularly for problems initially deemed unsolvable. Finally, we provide additional experiments and discussion regarding problem difficulty and surface forms, including cross-model difficulty agreement and paraphrasing transferability, and Variance of Variations (VOV) for language model evaluation.

pdf
Modeling Low-Resource Health Coaching Dialogues via Neuro-Symbolic Goal Summarization and Text-Units-Text Generation
Yue Zhou | Barbara Di Eugenio | Brian Ziebart | Lisa Sharp | Bing Liu | Nikolaos Agadakos
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Health coaching helps patients achieve personalized and lifestyle-related goals, effectively managing chronic conditions and alleviating mental health issues. It is particularly beneficial, however cost-prohibitive, for low-socioeconomic status populations due to its highly personalized and labor-intensive nature. In this paper, we propose a neuro-symbolic goal summarizer to support health coaches in keeping track of the goals and a text-units-text dialogue generation model that converses with patients and helps them create and accomplish specific goals for physical activities. Our models outperform previous state-of-the-art while eliminating the need for predefined schema and corresponding annotation. We also propose a new health coaching dataset extending previous work and a metric to measure the unconventionality of the patient’s response based on data difficulty, facilitating potential coach alerts during deployment.

2023

pdf
Improving Chinese Pop Song and Hokkien Gezi Opera Singing Voice Synthesis by Enhancing Local Modeling
Peng Bai | Yue Zhou | Meizhen Zheng | Wujin Sun | Xiaodong Shi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Singing Voice Synthesis (SVS) strives to synthesize pleasing vocals based on music scores and lyrics. The current acoustic models based on Transformer usually process the entire sequence globally and use a simple L1 loss. However, this approach overlooks the significance of local modeling within the sequence and the local optimization of the hard-to-synthesize parts in the predicted mel-spectrogram. Consequently, the synthesized audio exhibits local incongruities (e.g., local pronunciation jitter or local noise). To address this problem, we propose two methods to enhance local modeling in the acoustic model. First, we devise a nearest neighbor local attention, where each phoneme token focuses only on the adjacent phoneme tokens located before and after it. Second, we propose a phoneme-level local adaptive weights loss function that enables the model to focus more on the hard-to-synthesize parts of the mel-spectrogram. We have verified the universality of our methods on public Chinese pop song and Hokkien Gezi Opera datasets. Extensive experiments have demonstrated the effectiveness of our methods, resulting in significant improvements in both objective and subjective evaluations when compared to the strong baselines. Our code and demonstration samples are available at https://github.com/baipeng1/SVSELM.

pdf
DeCrisisMB: Debiased Semi-Supervised Learning for Crisis Tweet Classification via Memory Bank
Henry Zou | Yue Zhou | Weizhi Zhang | Cornelia Caragea
Findings of the Association for Computational Linguistics: EMNLP 2023

During crisis events, people often use social media platforms such as Twitter to disseminate information about the situation, warnings, advice, and support. Emergency relief organizations leverage such information to acquire timely crisis circumstances and expedite rescue operations. While existing works utilize such information to build models for crisis event analysis, fully-supervised approaches require annotating vast amounts of data and are impractical due to limited response time. On the other hand, semi-supervised models can be biased, performing moderately well for certain classes while performing extremely poorly for others, resulting in substantially negative effects on disaster monitoring and rescue. In this paper, we first study two recent debiasing methods on semi-supervised crisis tweet classification. Then we propose a simple but effective debiasing method, DeCrisisMB, that utilizes a Memory Bank to store and perform equal sampling for generated pseudo-labels from each class at each training iteration. Extensive experiments are conducted to compare different debiasing methods’ performance and generalization ability in both in-distribution and out-of-distribution settings. The results demonstrate the superior performance of our proposed method. Our code is available at https://github.com/HenryPengZou/DeCrisisMB.

2022

pdf
Towards Enhancing Health Coaching Dialogue in Low-Resource Settings
Yue Zhou | Barbara Di Eugenio | Brian Ziebart | Lisa Sharp | Bing Liu | Ben Gerber | Nikolaos Agadakos | Shweta Yadav
Proceedings of the 29th International Conference on Computational Linguistics

Health coaching helps patients identify and accomplish lifestyle-related goals, effectively improving the control of chronic diseases and mitigating mental health conditions. However, health coaching is cost-prohibitive due to its highly personalized and labor-intensive nature. In this paper, we propose to build a dialogue system that converses with the patients, helps them create and accomplish specific goals, and can address their emotions with empathy. However, building such a system is challenging since real-world health coaching datasets are limited and empathy is subtle. Thus, we propose a modularized health coaching dialogue with simplified NLU and NLG frameworks combined with mechanism-conditioned empathetic response generation. Through automatic and human evaluation, we show that our system generates more empathetic, fluent, and coherent responses and outperforms the state-of-the-art in NLU tasks while requiring less annotation. We view our approach as a key step towards building automated and more accessible health coaching systems.

pdf
SPDB Innovation Lab at SemEval-2022 Task 3: Recognize Appropriate Taxonomic Relations Between Two Nominal Arguments with ERNIE-M Model
Yue Zhou | Bowei Wei | Jianyu Liu | Yang Yang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

Synonym and antonym practice are the most common practices in our early childhood. It correlated our known words to a better place deep in our intuition. At the beginning of life for a machine, we would like to treat the machine as a baby and built a similar training for it as well to present a qualified performance. In this paper, we present an ensemble model for sentence logistics classification, which outperforms the state-of-art methods. Our approach essentially builds on two models including ERNIE-M and DeBERTaV3. With cross validation and random seeds tuning, we select the top performance models for the last soft ensemble and make them vote for the final answer, achieving the top 6 performance.

pdf
X-PuDu at SemEval-2022 Task 7: A Replaced Token Detection Task Pre-trained Model with Pattern-aware Ensembling for Identifying Plausible Clarifications
Junyuan Shang | Shuohuan Wang | Yu Sun | Yanjun Yu | Yue Zhou | Li Xiang | Guixiu Yang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes our winning system on SemEval 2022 Task 7: Identifying Plausible Clarifications ofImplicit and Underspecified Phrases in Instructional Texts. A replaced token detection pre-trained model is utilized with minorly different task-specific heads for SubTask-A: Multi-class Classification and SubTask-B: Ranking. Incorporating a pattern-aware ensemble method, our system achieves a 68.90% accuracy score and 0.8070 spearman’s rank correlation score surpassing the 2nd place with a large margin by 2.7 and 2.2 percent points for SubTask-A and SubTask-B, respectively. Our approach is simple and easy to implement, and we conducted ablation studies and qualitative and quantitative analyses for the working strategies used in our system.

2016

pdf
Learning to Answer Biomedical Questions: OAQA at BioASQ 4B
Zi Yang | Yue Zhou | Eric Nyberg
Proceedings of the Fourth BioASQ workshop