Yongqi Li
Wuhan University
Other people with similar names: Yongqi Li (The Hong Kong Polytechnic University)
2024
Prompting Large Language Models for Counterfactual Generation: An Empirical Study
Yongqi Li
|
Mayi Xu
|
Xin Miao
|
Shen Zhou
|
Tieyun Qian
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Large language models (LLMs) have made remarkable progress in a wide range of natural language understanding and generation tasks. However, their ability to generate counterfactuals has not been examined systematically. To bridge this gap, we present a comprehensive evaluation framework on various types of NLU tasks, which covers all key factors in determining LLMs’ capability of generating counterfactuals. Based on this framework, we 1) investigate the strengths and weaknesses of LLMs as the counterfactual generator, and 2) disclose the factors that affect LLMs when generating counterfactuals, including both the intrinsic properties of LLMs and prompt designing. The results show that, though LLMs are promising in most cases, they face challenges in complex tasks like RE since they are bounded by task-specific performance, entity constraints, and inherent selection bias. We also find that alignment techniques, e.g., instruction-tuning and reinforcement learning from human feedback, may potentially enhance the counterfactual generation ability of LLMs. On the contrary, simply increasing the parameter size does not yield the desired improvements. Besides, from the perspective of prompt designing, task guidelines unsurprisingly play an important role. However, the chain-of-thought approach does not always help due to inconsistency issues.
2023
Generating Commonsense Counterfactuals for Stable Relation Extraction
Xin Miao
|
Yongqi Li
|
Tieyun Qian
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Recent studies on counterfactual augmented data have achieved great success in the coarse-grained natural language processing tasks. However, existing methods encounter two major problems when dealing with the fine-grained relation extraction tasks. One is that they struggle to accurately identify causal terms under the invariant entity constraint. The other is that they ignore the commonsense constraint. To solve these problems, we propose a novel framework to generate commonsense counterfactuals for stable relation extraction. Specifically, to identify causal terms accurately, we introduce an intervention-based strategy and leverage a constituency parser for correction. To satisfy the commonsense constraint, we introduce the concept knowledge base WordNet and design a bottom-up relation expansion algorithm on it to uncover commonsense relations between entities. We conduct a series of comprehensive evaluations, including the low-resource, out-of-domain, and adversarial-attack settings. The results demonstrate that our framework significantly enhances the stability of base relation extraction models.
Type-Aware Decomposed Framework for Few-Shot Named Entity Recognition
Yongqi Li
|
Yu Yu
|
Tieyun Qian
Findings of the Association for Computational Linguistics: EMNLP 2023
Despite the recent success achieved by several two-stage prototypical networks in few-shot named entity recognition (NER) task, the over-detected false spans at span detection stage and the inaccurate and unstable prototypes at type classification stage remain to be challenging problems. In this paper, we propose a novel Type-Aware Decomposed framework, namely TadNER, to solve these problems. We first present a type-aware span filtering strategy to filter out false spans by removing those semantically far away from type names. We then present a type-aware contrastive learning strategy to construct more accurate and stable prototypes by jointly exploiting support samples and type names as references. Extensive experiments on various benchmarks prove that our proposed TadNER framework yields a new state-of-the-art performance.