This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Semi-supervised learning through deep generative models and multi-lingual pretraining techniques have orchestrated tremendous success across different areas of NLP. Nonetheless, their development has happened in isolation, while the combination of both could potentially be effective for tackling task-specific labelled data shortage. To bridge this gap, we combine semi-supervised deep generative models and multi-lingual pretraining to form a pipeline for document classification task. Compared to strong supervised learning baselines, our semi-supervised classification framework is highly competitive and outperforms the state-of-the-art counterparts in low-resource settings across several languages.
It has been long known that sparsity is an effective inductive bias for learning efficient representation of data in vectors with fixed dimensionality, and it has been explored in many areas of representation learning. Of particular interest to this work is the investigation of the sparsity within the VAE framework which has been explored a lot in the image domain, but has been lacking even a basic level of exploration in NLP. Additionally, NLP is also lagging behind in terms of learning sparse representations of large units of text e.g., sentences. We use the VAEs that induce sparse latent representations of large units of text to address the aforementioned shortcomings. First, we move in this direction by measuring the success of unsupervised state-of-the-art (SOTA) and other strong VAE-based sparsification baselines for text and propose a hierarchical sparse VAE model to address the stability issue of SOTA. Then, we look at the implications of sparsity on text classification across 3 datasets, and highlight a link between performance of sparse latent representations on downstream tasks and its ability to encode task-related information.
Variational Autoencoders (VAEs) are known to suffer from learning uninformative latent representation of the input due to issues such as approximated posterior collapse, or entanglement of the latent space. We impose an explicit constraint on the Kullback-Leibler (KL) divergence term inside the VAE objective function. While the explicit constraint naturally avoids posterior collapse, we use it to further understand the significance of the KL term in controlling the information transmitted through the VAE channel. Within this framework, we explore different properties of the estimated posterior distribution, and highlight the trade-off between the amount of information encoded in a latent code during training, and the generative capacity of the model.
While neural dependency parsers provide state-of-the-art accuracy for several languages, they still rely on large amounts of costly labeled training data. We demonstrate that in the small data regime, where uncertainty around parameter estimation and model prediction matters the most, Bayesian neural modeling is very effective. In order to overcome the computational and statistical costs of the approximate inference step in this framework, we utilize an efficient sampling procedure via stochastic gradient Langevin dynamics to generate samples from the approximated posterior. Moreover, we show that our Bayesian neural parser can be further improved when integrated into a multi-task parsing and POS tagging framework, designed to minimize task interference via an adversarial procedure. When trained and tested on 6 languages with less than 5k training instances, our parser consistently outperforms the strong bilstm baseline (Kiperwasser and Goldberg, 2016). Compared with the biaffine parser (Dozat et al., 2017) our model achieves an improvement of up to 3% for Vietnames and Irish, while our multi-task model achieves an improvement of up to 9% across five languages: Farsi, Russian, Turkish, Vietnamese, and Irish.