Xinyan Xiao


2024

pdf
InstructEval: Instruction-Tuned Text Evaluator from Human Preference
Wenhao Wu | Wei Li | Xinyan Xiao | Jiachen Liu | Sujian Li
Findings of the Association for Computational Linguistics ACL 2024

This paper explores to construct a general text evaluator based on open-source Large Language Models (LLMs), a domain predominantly occupied by commercial counterparts such as GPT-4. Recognizing the limitations of open-source models like Llama in evaluative tasks, we introduce InstructEval, a general multi-aspect text evaluator developed through instruction tuning of open-source LLMs. To overcome the shortage of annotated resources for multi-aspect evaluations, InstructEval combines extensive open Human Preference Modeling (HPM) datasets with a small set of multi-aspect annotated data.This approach not only enhances effectiveness in overall evaluation tasks but also exhibits improved performance in multi-aspect evaluation tasks.As demonstrated by our extensive experiments, InstructEval achieves comparable or superior performance to commercial LLMs like ChatGPT or GPT-4 in terms of both overall and multi-aspect evaluation.

pdf
UNIMO-G: Unified Image Generation through Multimodal Conditional Diffusion
Wei Li | Xue Xu | Jiachen Liu | Xinyan Xiao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing text-to-image diffusion models primarily generate images from text prompts. However, the inherent conciseness of textual descriptions poses challenges in faithfully synthesizing images with intricate details, such as specific entities or scenes. This paper presents UNIMO-G, a simple multimodal conditional diffusion framework that operates on multimodal prompts with interleaved textual and visual inputs, which demonstrates a unified ability for both text-driven and subject-driven image generation. UNIMO-G comprises two core components: a Multimodal Large Language Model (MLLM) for encoding multimodal prompts, and a conditional denoising diffusion network for generating images based on the encoded multimodal input. We leverage a two-stage training strategy to effectively train the framework: firstly pre-training on large-scale text-image pairs to develop conditional image generation capabilities, and then instruction tuning with multimodal prompts to achieve unified image generation proficiency. A well-designed data processing pipeline involving language grounding and image segmentation is employed to construct multi-modal prompts. UNIMO-G excels in both text-to-image generation and zero-shot subject-driven synthesis, and is notably effective in generating high-fidelity images from complex multimodal prompts involving multiple image entities.

2023

pdf
WeCheck: Strong Factual Consistency Checker via Weakly Supervised Learning
Wenhao Wu | Wei Li | Xinyan Xiao | Jiachen Liu | Sujian Li | Yajuan Lyu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A crucial issue of current text generation models is that they often uncontrollably generate text that is factually inconsistent with inputs. Due to lack of annotated data, existing factual consistency metrics usually train evaluation models on synthetic texts or directly transfer from other related tasks, such as question answering (QA) and natural language inference (NLI).Bias in synthetic text or upstream tasks makes them perform poorly on text actually generated by language models, especially for general evaluation for various tasks. To alleviate this problem, we propose a weakly supervised framework named WeCheck that is directly trained on actual generated samples from language models with weakly annotated labels.WeCheck first utilizes a generative model to infer the factual labels of generated samples by aggregating weak labels from multiple resources.Next, we train a simple noise-aware classification model as the target metric using the inferred weakly supervised information.Comprehensive experiments on various tasks demonstrate the strong performance of WeCheck, achieving an average absolute improvement of 3.3% on the TRUE benchmark over 11B state-of-the-art methods using only 435M parameters.Furthermore, it is up to 30 times faster than previous evaluation methods, greatly improving the accuracy and efficiency of factual consistency evaluation.

2022

pdf
Syntax-guided Contrastive Learning for Pre-trained Language Model
Shuai Zhang | Wang Lijie | Xinyan Xiao | Hua Wu
Findings of the Association for Computational Linguistics: ACL 2022

Syntactic information has been proved to be useful for transformer-based pre-trained language models. Previous studies often rely on additional syntax-guided attention components to enhance the transformer, which require more parameters and additional syntactic parsing in downstream tasks. This increase in complexity severely limits the application of syntax-enhanced language model in a wide range of scenarios. In order to inject syntactic knowledge effectively and efficiently into pre-trained language models, we propose a novel syntax-guided contrastive learning method which does not change the transformer architecture. Based on constituency and dependency structures of syntax trees, we design phrase-guided and tree-guided contrastive objectives, and optimize them in the pre-training stage, so as to help the pre-trained language model to capture rich syntactic knowledge in its representations. Experimental results show that our contrastive method achieves consistent improvements in a variety of tasks, including grammatical error detection, entity tasks, structural probing and GLUE. Detailed analysis further verifies that the improvements come from the utilization of syntactic information, and the learned attention weights are more explainable in terms of linguistics.

pdf
DU-VLG: Unifying Vision-and-Language Generation via Dual Sequence-to-Sequence Pre-training
Luyang Huang | Guocheng Niu | Jiachen Liu | Xinyan Xiao | Hua Wu
Findings of the Association for Computational Linguistics: ACL 2022

Due to the limitations of the model structure and pre-training objectives, existing vision-and-language generation models cannot utilize pair-wise images and text through bi-directional generation. In this paper, we propose DU-VLG, a framework which unifies vision-and-language generation as sequence generation problems. DU-VLG is trained with novel dual pre-training tasks: multi-modal denoising autoencoder tasks and modality translation tasks. To bridge the gap between image understanding and generation, we further design a novel commitment loss. We compare pre-training objectives on image captioning and text-to-image generation datasets. Results show that DU-VLG yields better performance than variants trained with uni-directional generation objectives or the variant without the commitment loss. We also obtain higher scores compared to previous state-of-the-art systems on three vision-and-language generation tasks. In addition, human judges further confirm that our model generates real and relevant images as well as faithful and informative captions.

pdf
UNIMO-2: End-to-End Unified Vision-Language Grounded Learning
Wei Li | Can Gao | Guocheng Niu | Xinyan Xiao | Hao Liu | Jiachen Liu | Hua Wu | Haifeng Wang
Findings of the Association for Computational Linguistics: ACL 2022

Vision-Language Pre-training (VLP) has achieved impressive performance on various cross-modal downstream tasks. However, most existing methods can only learn from aligned image-caption data and rely heavily on expensive regional features, which greatly limits their scalability and performance. In this paper, we propose an end-to-end unified-modal pre-training framework, namely UNIMO-2, for joint learning on both aligned image-caption data and unaligned image-only and text-only corpus. We build a unified Transformer model to jointly learn visual representations, textual representations and semantic alignment between images and texts. In particular, we propose to conduct grounded learning on both images and texts via a sharing grounded space, which helps bridge unaligned images and texts, and align the visual and textual semantic spaces on different types of corpora. The experiments show that our grounded learning method can improve textual and visual semantic alignment for improving performance on various cross-modal tasks. Moreover, benefiting from effective joint modeling of different types of corpora, our model also achieves impressive performance on single-modal visual and textual tasks. Our code and models are public at the UNIMO project page https://unimo-ptm.github.io/.

pdf
FRSUM: Towards Faithful Abstractive Summarization via Enhancing Factual Robustness
Wenhao Wu | Wei Li | Jiachen Liu | Xinyan Xiao | Ziqiang Cao | Sujian Li | Hua Wu
Findings of the Association for Computational Linguistics: EMNLP 2022

Despite being able to generate fluent and grammatical text, current Seq2Seq summarization models still suffering from the unfaithful generation problem.In this paper, we study the faithfulness of existing systems from a new perspective of factual robustness which is the ability to correctly generate factual information over adversarial unfaithful information.We first measure a model’sfactual robustness by its success rate to defend against adversarial attacks when generating factual information.The factual robustness analysis on a wide range of current systems shows its good consistency with human judgments on faithfulness.Inspired by these findings, we propose to improve the faithfulness of a model by enhancing its factual robustness.Specifically, we propose a novel training strategy, namely FRSUM, which teaches the model to defend against both explicit adversarial samples and implicit factual adversarial perturbations.Extensive automatic and human evaluation results show that FRSUM consistently improves the faithfulness of various Seq2Seq models, such as T5, BART.

pdf
Precisely the Point: Adversarial Augmentations for Faithful and Informative Text Generation
Wenhao Wu | Wei Li | Jiachen Liu | Xinyan Xiao | Sujian Li | Yajuan Lyu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Though model robustness has been extensively studied in language understanding, the robustness of Seq2Seq generation remains understudied.In this paper, we conduct the first quantitative analysis on the robustness of pre-trained Seq2Seq models. We find that even current SOTA pre-trained Seq2Seq model (BART) is still vulnerable, which leads to significant degeneration in faithfulness and informativeness for text generation tasks.This motivated us to further propose a novel adversarial augmentation framework, namely AdvSeq, for generally improving faithfulness and informativeness of Seq2Seq models via enhancing their robustness. AdvSeq automatically constructs two types of adversarial augmentations during training, including implicit adversarial samples by perturbing word representations and explicit adversarial samples by word swapping, both of which effectively improve Seq2Seq robustness.Extensive experiments on three popular text generation tasks demonstrate that AdvSeq significantly improves both the faithfulness and informativeness of Seq2Seq generation under both automatic and human evaluation settings.

pdf
A Fine-grained Interpretability Evaluation Benchmark for Neural NLP
Lijie Wang | Yaozong Shen | Shuyuan Peng | Shuai Zhang | Xinyan Xiao | Hao Liu | Hongxuan Tang | Ying Chen | Hua Wu | Haifeng Wang
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

While there is increasing concern about the interpretability of neural models, the evaluation of interpretability remains an open problem, due to the lack of proper evaluation datasets and metrics. In this paper, we present a novel benchmark to evaluate the interpretability of both neural models and saliency methods. This benchmark covers three representative NLP tasks: sentiment analysis, textual similarity and reading comprehension, each provided with both English and Chinese annotated data. In order to precisely evaluate the interpretability, we provide token-level rationales that are carefully annotated to be sufficient, compact and comprehensive. We also design a new metric, i.e., the consistency between the rationales before and after perturbations, to uniformly evaluate the interpretability on different types of tasks. Based on this benchmark, we conduct experiments on three typical models with three saliency methods, and unveil their strengths and weakness in terms of interpretability. We will release this benchmark (https://www.luge.ai/#/luge/task/taskDetail?taskId=15) and hope it can facilitate the research in building trustworthy systems.

pdf
PLANET: Dynamic Content Planning in Autoregressive Transformers for Long-form Text Generation
Zhe Hu | Hou Pong Chan | Jiachen Liu | Xinyan Xiao | Hua Wu | Lifu Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite recent progress of pre-trained language models on generating fluent text, existing methods still suffer from incoherence problems in long-form text generation tasks that require proper content control and planning to form a coherent high-level logical flow. In this work, we propose PLANET, a novel generation framework leveraging autoregressive self-attention mechanism to conduct content planning and surface realization dynamically. To guide the generation of output sentences, our framework enriches the Transformer decoder with latent representations to maintain sentence-level semantic plans grounded by bag-of-words. Moreover, we introduce a new coherence-based contrastive learning objective to further improve the coherence of output. Extensive experiments are conducted on two challenging long-form text generation tasks including counterargument generation and opinion article generation. Both automatic and human evaluations show that our method significantly outperforms strong baselines and generates more coherent texts with richer contents.

pdf
Unified Structure Generation for Universal Information Extraction
Yaojie Lu | Qing Liu | Dai Dai | Xinyan Xiao | Hongyu Lin | Xianpei Han | Le Sun | Hua Wu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. In this paper, we propose a unified text-to-structure generation framework, namely UIE, which can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism – structural schema instructor, and captures the common IE abilities via a large-scale pretrained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE.

2021

pdf
UNIMO: Towards Unified-Modal Understanding and Generation via Cross-Modal Contrastive Learning
Wei Li | Can Gao | Guocheng Niu | Xinyan Xiao | Hao Liu | Jiachen Liu | Hua Wu | Haifeng Wang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Existed pre-training methods either focus on single-modal tasks or multi-modal tasks, and cannot effectively adapt to each other. They can only utilize single-modal data (i.e., text or image) or limited multi-modal data (i.e., image-text pairs). In this work, we propose a UNIfied-MOdal pre-training architecture, namely UNIMO, which can effectively adapt to both single-modal and multi-modal understanding and generation tasks. Large scale of free text corpus and image collections are utilized to improve the capability of visual and textual understanding, and cross-modal contrastive learning (CMCL) is leveraged to align the textual and visual information into a unified semantic space, over a corpus of image-text pairs augmented with related images and texts. With the help of rich non-paired single-modal data, our model is able to learn more generalizable representations, by allowing textual knowledge and visual knowledge to enhance each other in the unified semantic space. The experimental results show that UNIMO greatly improves the performance of several single-modal and multi-modal downstream tasks. Our code and pre-trained models are public at https://github.com/PaddlePaddle/Research/tree/master/NLP/UNIMO.

pdf
BASS: Boosting Abstractive Summarization with Unified Semantic Graph
Wenhao Wu | Wei Li | Xinyan Xiao | Jiachen Liu | Ziqiang Cao | Sujian Li | Hua Wu | Haifeng Wang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Abstractive summarization for long-document or multi-document remains challenging for the Seq2Seq architecture, as Seq2Seq is not good at analyzing long-distance relations in text. In this paper, we present BASS, a novel framework for Boosting Abstractive Summarization based on a unified Semantic graph, which aggregates co-referent phrases distributing across a long range of context and conveys rich relations between phrases. Further, a graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process by leveraging the graph structure. Specifically, several graph augmentation methods are designed to encode both the explicit and implicit relations in the text while the graph-propagation attention mechanism is developed in the decoder to select salient content into the summary. Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.

pdf
SgSum:Transforming Multi-document Summarization into Sub-graph Selection
Moye Chen | Wei Li | Jiachen Liu | Xinyan Xiao | Hua Wu | Haifeng Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Most of existing extractive multi-document summarization (MDS) methods score each sentence individually and extract salient sentences one by one to compose a summary, which have two main drawbacks: (1) neglecting both the intra and cross-document relations between sentences; (2) neglecting the coherence and conciseness of the whole summary. In this paper, we propose a novel MDS framework (SgSum) to formulate the MDS task as a sub-graph selection problem, in which source documents are regarded as a relation graph of sentences (e.g., similarity graph or discourse graph) and the candidate summaries are its sub-graphs. Instead of selecting salient sentences, SgSum selects a salient sub-graph from the relation graph as the summary. Comparing with traditional methods, our method has two main advantages: (1) the relations between sentences are captured by modeling both the graph structure of the whole document set and the candidate sub-graphs; (2) directly outputs an integrate summary in the form of sub-graph which is more informative and coherent. Extensive experiments on MultiNews and DUC datasets show that our proposed method brings substantial improvements over several strong baselines. Human evaluation results also demonstrate that our model can produce significantly more coherent and informative summaries compared with traditional MDS methods. Moreover, the proposed architecture has strong transfer ability from single to multi-document input, which can reduce the resource bottleneck in MDS tasks.

pdf
Fine-grained Entity Typing via Label Reasoning
Qing Liu | Hongyu Lin | Xinyan Xiao | Xianpei Han | Le Sun | Hua Wu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose Label Reasoning Network(LRN), which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

pdf
Data Augmentation with Hierarchical SQL-to-Question Generation for Cross-domain Text-to-SQL Parsing
Kun Wu | Lijie Wang | Zhenghua Li | Ao Zhang | Xinyan Xiao | Hua Wu | Min Zhang | Haifeng Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Data augmentation has attracted a lot of research attention in the deep learning era for its ability in alleviating data sparseness. The lack of labeled data for unseen evaluation databases is exactly the major challenge for cross-domain text-to-SQL parsing. Previous works either require human intervention to guarantee the quality of generated data, or fail to handle complex SQL queries. This paper presents a simple yet effective data augmentation framework. First, given a database, we automatically produce a large number of SQL queries based on an abstract syntax tree grammar. For better distribution matching, we require that at least 80% of SQL patterns in the training data are covered by generated queries. Second, we propose a hierarchical SQL-to-question generation model to obtain high-quality natural language questions, which is the major contribution of this work. Finally, we design a simple sampling strategy that can greatly improve training efficiency given large amounts of generated data. Experiments on three cross-domain datasets, i.e., WikiSQL and Spider in English, and DuSQL in Chinese, show that our proposed data augmentation framework can consistently improve performance over strong baselines, and the hierarchical generation component is the key for the improvement.

2020

pdf
SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis
Hao Tian | Can Gao | Xinyan Xiao | Hao Liu | Bolei He | Hua Wu | Haifeng Wang | Feng Wu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recently, sentiment analysis has seen remarkable advance with the help of pre-training approaches. However, sentiment knowledge, such as sentiment words and aspect-sentiment pairs, is ignored in the process of pre-training, despite the fact that they are widely used in traditional sentiment analysis approaches. In this paper, we introduce Sentiment Knowledge Enhanced Pre-training (SKEP) in order to learn a unified sentiment representation for multiple sentiment analysis tasks. With the help of automatically-mined knowledge, SKEP conducts sentiment masking and constructs three sentiment knowledge prediction objectives, so as to embed sentiment information at the word, polarity and aspect level into pre-trained sentiment representation. In particular, the prediction of aspect-sentiment pairs is converted into multi-label classification, aiming to capture the dependency between words in a pair. Experiments on three kinds of sentiment tasks show that SKEP significantly outperforms strong pre-training baseline, and achieves new state-of-the-art results on most of the test datasets. We release our code at https://github.com/baidu/Senta.

pdf
Leveraging Graph to Improve Abstractive Multi-Document Summarization
Wei Li | Xinyan Xiao | Jiachen Liu | Hua Wu | Haifeng Wang | Junping Du
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Graphs that capture relations between textual units have great benefits for detecting salient information from multiple documents and generating overall coherent summaries. In this paper, we develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents such as similarity graph and discourse graph, to more effectively process multiple input documents and produce abstractive summaries. Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents. Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries. Furthermore, pre-trained language models can be easily combined with our model, which further improve the summarization performance significantly. Empirical results on the WikiSum and MultiNews dataset show that the proposed architecture brings substantial improvements over several strong baselines.

pdf
Exploring Contextual Word-level Style Relevance for Unsupervised Style Transfer
Chulun Zhou | Liangyu Chen | Jiachen Liu | Xinyan Xiao | Jinsong Su | Sheng Guo | Hua Wu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Unsupervised style transfer aims to change the style of an input sentence while preserving its original content without using parallel training data. In current dominant approaches, owing to the lack of fine-grained control on the influence from the target style, they are unable to yield desirable output sentences. In this paper, we propose a novel attentional sequence-to-sequence (Seq2seq) model that dynamically exploits the relevance of each output word to the target style for unsupervised style transfer. Specifically, we first pretrain a style classifier, where the relevance of each input word to the original style can be quantified via layer-wise relevance propagation. In a denoising auto-encoding manner, we train an attentional Seq2seq model to reconstruct input sentences and repredict word-level previously-quantified style relevance simultaneously. In this way, this model is endowed with the ability to automatically predict the style relevance of each output word. Then, we equip the decoder of this model with a neural style component to exploit the predicted wordlevel style relevance for better style transfer. Particularly, we fine-tune this model using a carefully-designed objective function involving style transfer, style relevance consistency, content preservation and fluency modeling loss terms. Experimental results show that our proposed model achieves state-of-the-art performance in terms of both transfer accuracy and content preservation.

pdf
Diversified Multiple Instance Learning for Document-Level Multi-Aspect Sentiment Classification
Yunjie Ji | Hao Liu | Bolei He | Xinyan Xiao | Hua Wu | Yanhua Yu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Neural Document-level Multi-aspect Sentiment Classification (DMSC) usually requires a lot of manual aspect-level sentiment annotations, which is time-consuming and laborious. As document-level sentiment labeled data are widely available from online service, it is valuable to perform DMSC with such free document-level annotations. To this end, we propose a novel Diversified Multiple Instance Learning Network (D-MILN), which is able to achieve aspect-level sentiment classification with only document-level weak supervision. Specifically, we connect aspect-level and document-level sentiment by formulating this problem as multiple instance learning, providing a way to learn aspect-level classifier from the back propagation of document-level supervision. Two diversified regularizations are further introduced in order to avoid the overfitting on document-level signals during training. Diversified textual regularization encourages the classifier to select aspect-relevant snippets, and diversified sentimental regularization prevents the aspect-level sentiments from being overly consistent with document-level sentiment. Experimental results on TripAdvisor and BeerAdvocate datasets show that D-MILN remarkably outperforms recent weakly-supervised baselines, and is also comparable to the supervised method.

pdf
Syntactic and Semantic-driven Learning for Open Information Extraction
Jialong Tang | Yaojie Lu | Hongyu Lin | Xianpei Han | Le Sun | Xinyan Xiao | Hua Wu
Findings of the Association for Computational Linguistics: EMNLP 2020

One of the biggest bottlenecks in building accurate, high coverage neural open IE systems is the need for large labelled corpora. The diversity of open domain corpora and the variety of natural language expressions further exacerbate this problem. In this paper, we propose a syntactic and semantic-driven learning approach, which can learn neural open IE models without any human-labelled data by leveraging syntactic and semantic knowledge as noisier, higher-level supervision. Specifically, we first employ syntactic patterns as data labelling functions and pretrain a base model using the generated labels. Then we propose a syntactic and semantic-driven reinforcement learning algorithm, which can effectively generalize the base model to open situations with high accuracy. Experimental results show that our approach significantly outperforms the supervised counterparts, and can even achieve competitive performance to supervised state-of-the-art (SoA) model.

2019

pdf
Enhancing Local Feature Extraction with Global Representation for Neural Text Classification
Guocheng Niu | Hengru Xu | Bolei He | Xinyan Xiao | Hua Wu | Sheng Gao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

For text classification, traditional local feature driven models learn long dependency by deeply stacking or hybrid modeling. This paper proposes a novel Encoder1-Encoder2 architecture, where global information is incorporated into the procedure of local feature extraction from scratch. In particular, Encoder1 serves as a global information provider, while Encoder2 performs as a local feature extractor and is directly fed into the classifier. Meanwhile, two modes are also designed for their interaction. Thanks to the awareness of global information, our method is able to learn better instance specific local features and thus avoids complicated upper operations. Experiments conducted on eight benchmark datasets demonstrate that our proposed architecture promotes local feature driven models by a substantial margin and outperforms the previous best models in the fully-supervised setting.

pdf
ARNOR: Attention Regularization based Noise Reduction for Distant Supervision Relation Classification
Wei Jia | Dai Dai | Xinyan Xiao | Hua Wu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Distant supervision is widely used in relation classification in order to create large-scale training data by aligning a knowledge base with an unlabeled corpus. However, it also introduces amounts of noisy labels where a contextual sentence actually does not express the labeled relation. In this paper, we propose ARNOR, a novel Attention Regularization based NOise Reduction framework for distant supervision relation classification. ARNOR assumes that a trustable relation label should be explained by the neural attention model. Specifically, our ARNOR framework iteratively learns an interpretable model and utilizes it to select trustable instances. We first introduce attention regularization to force the model to pay attention to the patterns which explain the relation labels, so as to make the model more interpretable. Then, if the learned model can clearly locate the relation patterns of a candidate instance in the training set, we will select it as a trustable instance for further training step. According to the experiments on NYT data, our ARNOR framework achieves significant improvements over state-of-the-art methods in both relation classification performance and noise reduction effect.

2018

pdf
DuReader: a Chinese Machine Reading Comprehension Dataset from Real-world Applications
Wei He | Kai Liu | Jing Liu | Yajuan Lyu | Shiqi Zhao | Xinyan Xiao | Yuan Liu | Yizhong Wang | Hua Wu | Qiaoqiao She | Xuan Liu | Tian Wu | Haifeng Wang
Proceedings of the Workshop on Machine Reading for Question Answering

This paper introduces DuReader, a new large-scale, open-domain Chinese machine reading comprehension (MRC) dataset, designed to address real-world MRC. DuReader has three advantages over previous MRC datasets: (1) data sources: questions and documents are based on Baidu Search and Baidu Zhidao; answers are manually generated. (2) question types: it provides rich annotations for more question types, especially yes-no and opinion questions, that leaves more opportunity for the research community. (3) scale: it contains 200K questions, 420K answers and 1M documents; it is the largest Chinese MRC dataset so far. Experiments show that human performance is well above current state-of-the-art baseline systems, leaving plenty of room for the community to make improvements. To help the community make these improvements, both DuReader and baseline systems have been posted online. We also organize a shared competition to encourage the exploration of more models. Since the release of the task, there are significant improvements over the baselines.

pdf
Improving Neural Abstractive Document Summarization with Explicit Information Selection Modeling
Wei Li | Xinyan Xiao | Yajuan Lyu | Yuanzhuo Wang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Information selection is the most important component in document summarization task. In this paper, we propose to extend the basic neural encoding-decoding framework with an information selection layer to explicitly model and optimize the information selection process in abstractive document summarization. Specifically, our information selection layer consists of two parts: gated global information filtering and local sentence selection. Unnecessary information in the original document is first globally filtered, then salient sentences are selected locally while generating each summary sentence sequentially. To optimize the information selection process directly, distantly-supervised training guided by the golden summary is also imported. Experimental results demonstrate that the explicit modeling and optimizing of the information selection process improves document summarization performance significantly, which enables our model to generate more informative and concise summaries, and thus significantly outperform state-of-the-art neural abstractive methods.

pdf
Improving Neural Abstractive Document Summarization with Structural Regularization
Wei Li | Xinyan Xiao | Yajuan Lyu | Yuanzhuo Wang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Recent neural sequence-to-sequence models have shown significant progress on short text summarization. However, for document summarization, they fail to capture the long-term structure of both documents and multi-sentence summaries, resulting in information loss and repetitions. In this paper, we propose to leverage the structural information of both documents and multi-sentence summaries to improve the document summarization performance. Specifically, we import both structural-compression and structural-coverage regularization into the summarization process in order to capture the information compression and information coverage properties, which are the two most important structural properties of document summarization. Experimental results demonstrate that the structural regularization improves the document summarization performance significantly, which enables our model to generate more informative and concise summaries, and thus significantly outperforms state-of-the-art neural abstractive methods.

pdf
Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension
Zhen Wang | Jiachen Liu | Xinyan Xiao | Yajuan Lyu | Tian Wu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While sophisticated neural-based techniques have been developed in reading comprehension, most approaches model the answer in an independent manner, ignoring its relations with other answer candidates. This problem can be even worse in open-domain scenarios, where candidates from multiple passages should be combined to answer a single question. In this paper, we formulate reading comprehension as an extract-then-select two-stage procedure. We first extract answer candidates from passages, then select the final answer by combining information from all the candidates. Furthermore, we regard candidate extraction as a latent variable and train the two-stage process jointly with reinforcement learning. As a result, our approach has improved the state-of-the-art performance significantly on two challenging open-domain reading comprehension datasets. Further analysis demonstrates the effectiveness of our model components, especially the information fusion of all the candidates and the joint training of the extract-then-select procedure.

2013

pdf
Max-Margin Synchronous Grammar Induction for Machine Translation
Xinyan Xiao | Deyi Xiong
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

2012

pdf
A Topic Similarity Model for Hierarchical Phrase-based Translation
Xinyan Xiao | Deyi Xiong | Min Zhang | Qun Liu | Shouxun Lin
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
Unsupervised Discriminative Induction of Synchronous Grammar for Machine Translation
Xinyan Xiao | Deyi Xiong | Yang Liu | Qun Liu | Shouxun Lin
Proceedings of COLING 2012

2011

pdf
Fast Generation of Translation Forest for Large-Scale SMT Discriminative Training
Xinyan Xiao | Yang Liu | Qun Liu | Shouxun Lin
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing

2010

pdf
Joint Tokenization and Translation
Xinyan Xiao | Yang Liu | Young-Sook Hwang | Qun Liu | Shouxun Lin
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010)

2009

pdf
The ICT statistical machine translation system for the IWSLT 2009
Haitao Mi | Yang Li | Tian Xia | Xinyan Xiao | Yang Feng | Jun Xie | Hao Xiong | Zhaopeng Tu | Daqi Zheng | Yanjuan Lu | Qun Liu
Proceedings of the 6th International Workshop on Spoken Language Translation: Evaluation Campaign

This paper describes the ICT Statistical Machine Translation systems that used in the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2009. For this year’s evaluation, we participated in the Challenge Task (Chinese-English and English-Chinese) and BTEC Task (Chinese-English). And we mainly focus on one new method to improve single system’s translation quality. Specifically, we developed a sentence-similarity based development set selection technique. For each task, we finally submitted the single system who got the maximum BLEU scores on the selected development set. The four single translation systems are based on different techniques: a linguistically syntax-based system, two formally syntax-based systems and a phrase-based system. Typically, we didn’t use any rescoring or system combination techniques in this year’s evaluation.

pdf
Weighted Alignment Matrices for Statistical Machine Translation
Yang Liu | Tian Xia | Xinyan Xiao | Qun Liu
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing