This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Continual relation extraction (CRE) aims to continuously learn relations in new tasks without forgetting old relations in previous tasks.Current CRE methods are all rehearsal-based which need to store samples and thus may encounter privacy and security issues.This paper targets rehearsal-free continual relation extraction for the first time and decomposes it into task identification and within-task prediction sub-problems. Existing rehearsal-free methods focus on training a model (expert) for within-task prediction yet neglect to enhance models’ capability of task identification.In this paper, we propose an Ensemble-of-Experts (EoE) framework for rehearsal-free continual relation extraction. Specifically, we first discriminatively train each expert by augmenting analogous relations across tasks to enhance the expert’s task identification ability. We then propose a cascade voting mechanism to form an ensemble of experts for effectively aggregating their abilities.Extensive experiments demonstrate that our method outperforms current rehearsal-free methods and is even better than rehearsal-based CRE methods.
Large language models (LLMs) have achieved satisfactory performance in counterfactual generation. However, confined by the stochastic generation process of LLMs, there often are misalignments between LLMs and humans which hinder LLMs from handling complex tasks like relation extraction. As a result, LLMs may generate commonsense-violated counterfactuals like ‘eggs were produced by a box’. To bridge this gap, we propose to mimick the episodic memory retrieval, the working mechanism of human hippocampus, to align LLMs’ generation process with that of humans. In this way, LLMs can derive experience from their extensive memory, which keeps in line with the way humans gain commonsense. We then implement two central functions in the hippocampus, i.e., pattern separation and pattern completion, to retrieve the episodic memory from LLMs and generate commonsense counterfactuals for relation extraction. Experimental results demonstrate the improvements of our framework over existing methods in terms of the quality of counterfactuals.
Large language models (LLMs) have made remarkable progress in a wide range of natural language understanding and generation tasks. However, their ability to generate counterfactuals has not been examined systematically. To bridge this gap, we present a comprehensive evaluation framework on various types of NLU tasks, which covers all key factors in determining LLMs’ capability of generating counterfactuals. Based on this framework, we 1) investigate the strengths and weaknesses of LLMs as the counterfactual generator, and 2) disclose the factors that affect LLMs when generating counterfactuals, including both the intrinsic properties of LLMs and prompt designing. The results show that, though LLMs are promising in most cases, they face challenges in complex tasks like RE since they are bounded by task-specific performance, entity constraints, and inherent selection bias. We also find that alignment techniques, e.g., instruction-tuning and reinforcement learning from human feedback, may potentially enhance the counterfactual generation ability of LLMs. On the contrary, simply increasing the parameter size does not yield the desired improvements. Besides, from the perspective of prompt designing, task guidelines unsurprisingly play an important role. However, the chain-of-thought approach does not always help due to inconsistency issues.
Recent studies on counterfactual augmented data have achieved great success in the coarse-grained natural language processing tasks. However, existing methods encounter two major problems when dealing with the fine-grained relation extraction tasks. One is that they struggle to accurately identify causal terms under the invariant entity constraint. The other is that they ignore the commonsense constraint. To solve these problems, we propose a novel framework to generate commonsense counterfactuals for stable relation extraction. Specifically, to identify causal terms accurately, we introduce an intervention-based strategy and leverage a constituency parser for correction. To satisfy the commonsense constraint, we introduce the concept knowledge base WordNet and design a bottom-up relation expansion algorithm on it to uncover commonsense relations between entities. We conduct a series of comprehensive evaluations, including the low-resource, out-of-domain, and adversarial-attack settings. The results demonstrate that our framework significantly enhances the stability of base relation extraction models.
Evaluation metrics shine the light on the best models and thus strongly influence the research directions, such as the recently developed dialogue metrics USR, FED, and GRADE. However, most current metrics evaluate the dialogue data as isolated and static because they only focus on a single quality or several qualities. To mitigate the problem, this paper proposes an interpretable, multi-faceted, and controllable framework IM^2 (Interpretable and Multi-category Integrated Metric) to combine a large number of metrics which are good at measuring different qualities. The IM^2 framework first divides current popular dialogue qualities into different categories and then applies or proposes dialogue metrics to measure the qualities within each category and finally generates an overall IM^2 score. An initial version of IM^2 was submitted to the AAAI 2022 Track5.1@DSTC10 challenge and took the 2^nd place on both of the development and test leaderboard. After the competition, we develop more metrics and improve the performance of our model. We compare IM^2 with other 13 current dialogue metrics and experimental results show that IM^2 correlates more strongly with human judgments than any of them on each evaluated dataset.
Rumor detection on social media puts pre-trained language models (LMs), such as BERT, and auxiliary features, such as comments, into use. However, on the one hand, rumor detection datasets in Chinese companies with comments are rare; on the other hand, intensive interaction of attention on Transformer-based models like BERT may hinder performance improvement. To alleviate these problems, we build a new Chinese microblog dataset named Weibo20 by collecting posts and associated comments from Sina Weibo and propose a new ensemble named STANKER (Stacking neTwork bAsed-on atteNtion-masKed BERT). STANKER adopts two level-grained attention-masked BERT (LGAM-BERT) models as base encoders. Unlike the original BERT, our new LGAM-BERT model takes comments as important auxiliary features and masks co-attention between posts and comments on lower-layers. Experiments on Weibo20 and three existing social media datasets showed that STANKER outperformed all compared models, especially beating the old state-of-the-art on Weibo dataset.