Thibault Magallon
2018
Détection d’erreurs dans des transcriptions OCR de documents historiques par réseaux de neurones récurrents multi-niveau (Combining character level and word level RNNs for post-OCR error detection)
Thibault Magallon
|
Frederic Bechet
|
Benoit Favre
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN
Le traitement à posteriori de transcriptions OCR cherche à détecter les erreurs dans les sorties d’OCR pour tenter de les corriger, deux tâches évaluées par la compétition ICDAR-2017 Post-OCR Text Correction. Nous présenterons dans ce papier un système de détection d’erreurs basé sur un modèle à réseaux récurrents combinant une analyse du texte au niveau des mots et des caractères en deux temps. Ce système a été classé second dans trois catégories évaluées parmi 11 candidats lors de la compétition.
Search