Tathagata Sengupta


2020

pdf
Inducing Interpretability in Knowledge Graph Embeddings
. Chandrahas | Tathagata Sengupta | Cibi Pragadeesh | Partha Talukdar
Proceedings of the 17th International Conference on Natural Language Processing (ICON)

We study the problem of inducing interpretability in Knowledge Graph (KG) embeddings. Learning KG embeddings has been an active area of research in the past few years, resulting in many different models. However, most of these methods do not address the interpretability (semantics) of individual dimensions of the learned embeddings. In this work, we study this problem and propose a method for inducing interpretability in KG embeddings using entity co-occurrence statistics. The proposed method significantly improves the interpretability, while maintaining comparable performance in other KG tasks.