This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Although the existing Named Entity Recognition (NER) models have achieved promising performance, they suffer from certain drawbacks. The sequence labeling-based NER models do not perform well in recognizing long entities as they focus only on word-level information, while the segment-based NER models which focus on processing segment instead of single word are unable to capture the word-level dependencies within the segment. Moreover, as boundary detection and type prediction may cooperate with each other for the NER task, it is also important for the two sub-tasks to mutually reinforce each other by sharing their information. In this paper, we propose a novel Modularized Interaction Network (MIN) model which utilizes both segment-level information and word-level dependencies, and incorporates an interaction mechanism to support information sharing between boundary detection and type prediction to enhance the performance for the NER task. We have conducted extensive experiments based on three NER benchmark datasets. The performance results have shown that the proposed MIN model has outperformed the current state-of-the-art models.
Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quaternion algebra and hypercomplex spaces, enabling not only expressive inter-component interactions but also significantly (75%) reduced parameter size due to lesser degrees of freedom in the Hamilton product. We propose Quaternion variants of models, giving rise to new architectures such as the Quaternion attention Model and Quaternion Transformer. Extensive experiments on a battery of NLP tasks demonstrates the utility of proposed Quaternion-inspired models, enabling up to 75% reduction in parameter size without significant loss in performance.
This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by 51% relative improvement on BLEU-4 and 17% relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.
This paper presents a new deep learning architecture for Natural Language Inference (NLI). Firstly, we introduce a new architecture where alignment pairs are compared, compressed and then propagated to upper layers for enhanced representation learning. Secondly, we adopt factorization layers for efficient and expressive compression of alignment vectors into scalar features, which are then used to augment the base word representations. The design of our approach is aimed to be conceptually simple, compact and yet powerful. We conduct experiments on three popular benchmarks, SNLI, MultiNLI and SciTail, achieving competitive performance on all. A lightweight parameterization of our model also enjoys a 3 times reduction in parameter size compared to the existing state-of-the-art models, e.g., ESIM and DIIN, while maintaining competitive performance. Additionally, visual analysis shows that our propagated features are highly interpretable.
Sequence encoders are crucial components in many neural architectures for learning to read and comprehend. This paper presents a new compositional encoder for reading comprehension (RC). Our proposed encoder is not only aimed at being fast but also expressive. Specifically, the key novelty behind our encoder is that it explicitly models across multiple granularities using a new dilated composition mechanism. In our approach, gating functions are learned by modeling relationships and reasoning over multi-granular sequence information, enabling compositional learning that is aware of both long and short term information. We conduct experiments on three RC datasets, showing that our proposed encoder demonstrates very promising results both as a standalone encoder as well as a complementary building block. Empirical results show that simple Bi-Attentive architectures augmented with our proposed encoder not only achieves state-of-the-art / highly competitive results but is also considerably faster than other published works.
This paper proposes a new neural architecture that exploits readily available sentiment lexicon resources. The key idea is that that incorporating a word-level prior can aid in the representation learning process, eventually improving model performance. To this end, our model employs two distinctly unique components, i.e., (1) we introduce a lexicon-driven contextual attention mechanism to imbue lexicon words with long-range contextual information and (2), we introduce a contrastive co-attention mechanism that models contrasting polarities between all positive and negative words in a sentence. Via extensive experiments, we show that our approach outperforms many other neural baselines on sentiment classification tasks on multiple benchmark datasets.
Learning a matching function between two text sequences is a long standing problem in NLP research. This task enables many potential applications such as question answering and paraphrase identification. This paper proposes Co-Stack Residual Affinity Networks (CSRAN), a new and universal neural architecture for this problem. CSRAN is a deep architecture, involving stacked (multi-layered) recurrent encoders. Stacked/Deep architectures are traditionally difficult to train, due to the inherent weaknesses such as difficulty with feature propagation and vanishing gradients. CSRAN incorporates two novel components to take advantage of the stacked architecture. Firstly, it introduces a new bidirectional alignment mechanism that learns affinity weights by fusing sequence pairs across stacked hierarchies. Secondly, it leverages a multi-level attention refinement component between stacked recurrent layers. The key intuition is that, by leveraging information across all network hierarchies, we can not only improve gradient flow but also improve overall performance. We conduct extensive experiments on six well-studied text sequence matching datasets, achieving state-of-the-art performance on all.
Sarcasm is a sophisticated speech act which commonly manifests on social communities such as Twitter and Reddit. The prevalence of sarcasm on the social web is highly disruptive to opinion mining systems due to not only its tendency of polarity flipping but also usage of figurative language. Sarcasm commonly manifests with a contrastive theme either between positive-negative sentiments or between literal-figurative scenarios. In this paper, we revisit the notion of modeling contrast in order to reason with sarcasm. More specifically, we propose an attention-based neural model that looks in-between instead of across, enabling it to explicitly model contrast and incongruity. We conduct extensive experiments on six benchmark datasets from Twitter, Reddit and the Internet Argument Corpus. Our proposed model not only achieves state-of-the-art performance on all datasets but also enjoys improved interpretability.
Taxonomies play an important role in many applications by organizing domain knowledge into a hierarchy of ‘is-a’ relations between terms. Previous work on automatic construction of taxonomies from text documents either ignored temporal information or used fixed time periods to discretize the time series of documents. In this paper, we propose a time-aware method to automatically construct and effectively maintain a taxonomy from a given series of documents preclustered for a domain of interest. The method extracts temporal information from the documents and uses a timestamp contribution function to score the temporal relevance of the evidence from source texts when identifying the taxonomic relations for constructing the taxonomy. Experimental results show that our proposed method outperforms the state-of-the-art methods by increasing F-measure up to 7%–20%. Furthermore, the proposed method can incrementally update the taxonomy by adding fresh relations from new data and removing outdated relations using an information decay function. It thus avoids rebuilding the whole taxonomy from scratch for every update and keeps the taxonomy effectively up-to-date in order to track the latest information trends in the rapidly evolving domain.