Sheng-yi Kong


2020

pdf
Semi-supervised Category-specific Review Tagging on Indonesian E-Commerce Product Reviews
Meng Sun | Marie Stephen Leo | Eram Munawwar | Paul C. Condylis | Sheng-yi Kong | Seong Per Lee | Albert Hidayat | Muhamad Danang Kerianto
Proceedings of the 3rd Workshop on e-Commerce and NLP

Product reviews are a huge source of natural language data in e-commerce applications. Several millions of customers write reviews regarding a variety of topics. We categorize these topics into two groups as either “category-specific” topics or as “generic” topics that span multiple product categories. While we can use a supervised learning approach to tag review text for generic topics, it is impossible to use supervised approaches to tag category-specific topics due to the sheer number of possible topics for each category. In this paper, we present an approach to tag each review with several product category-specific tags on Indonesian language product reviews using a semi-supervised approach. We show that our proposed method can work at scale on real product reviews at Tokopedia, a major e-commerce platform in Indonesia. Manual evaluation shows that the proposed method can efficiently generate category-specific product tags.

2018

pdf
Learning Semantic Textual Similarity from Conversations
Yinfei Yang | Steve Yuan | Daniel Cer | Sheng-yi Kong | Noah Constant | Petr Pilar | Heming Ge | Yun-Hsuan Sung | Brian Strope | Ray Kurzweil
Proceedings of the Third Workshop on Representation Learning for NLP

We present a novel approach to learn representations for sentence-level semantic similarity using conversational data. Our method trains an unsupervised model to predict conversational responses. The resulting sentence embeddings perform well on the Semantic Textual Similarity (STS) Benchmark and SemEval 2017’s Community Question Answering (CQA) question similarity subtask. Performance is further improved by introducing multitask training, combining conversational response prediction and natural language inference. Extensive experiments show the proposed model achieves the best performance among all neural models on the STS Benchmark and is competitive with the state-of-the-art feature engineered and mixed systems for both tasks.

pdf
Universal Sentence Encoder for English
Daniel Cer | Yinfei Yang | Sheng-yi Kong | Nan Hua | Nicole Limtiaco | Rhomni St. John | Noah Constant | Mario Guajardo-Cespedes | Steve Yuan | Chris Tar | Brian Strope | Ray Kurzweil
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present easy-to-use TensorFlow Hub sentence embedding models having good task transfer performance. Model variants allow for trade-offs between accuracy and compute resources. We report the relationship between model complexity, resources, and transfer performance. Comparisons are made with baselines without transfer learning and to baselines that incorporate word-level transfer. Transfer learning using sentence-level embeddings is shown to outperform models without transfer learning and often those that use only word-level transfer. We show good transfer task performance with minimal training data and obtain encouraging results on word embedding association tests (WEAT) of model bias.