Shanshan Zhong
2024
MoExtend: Tuning New Experts for Modality and Task Extension
Shanshan Zhong
|
Shanghua Gao
|
Zhongzhan Huang
|
Wushao Wen
|
Marinka Zitnik
|
Pan Zhou
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
Large language models (LLMs) excel in various tasks but are primarily trained on text data, limiting their application scope. Expanding LLM capabilities to include vision-language understanding is vital, yet training them on multimodal data from scratch is challenging and costly. Existing instruction tuning methods, e.g., LLAVA, often connects a pretrained CLIP vision encoder and LLMs via fully fine-tuning LLMs to bridge the modality gap. However, full fine-tuning is plagued by catastrophic forgetting, i.e., forgetting previous knowledge, and high training costs particularly in the era of increasing tasks and modalities. To solve this issue, we introduce MoExtend, an effective framework designed to streamline the modality adaptation and extension of Mixture-of-Experts (MoE) models. MoExtend seamlessly integrates new experts into pre-trained MoE models, endowing them with novel knowledge without the need to tune pretrained models such as MoE and vision encoders. This approach enables rapid adaptation and extension to new modal data or tasks, effectively addressing the challenge of accommodating new modalities within LLMs. Furthermore, MoExtend avoids tuning pretrained models, thus mitigating the risk of catastrophic forgetting. Experimental results demonstrate the efficacy and efficiency of MoExtend in enhancing the multimodal capabilities of LLMs, contributing to advancements in multimodal AI research.
2022
CEM: Machine-Human Chatting Handoff via Causal-Enhance Module
Shanshan Zhong
|
Jinghui Qin
|
Zhongzhan Huang
|
Daifeng Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Aiming to ensure chatbot quality by predicting chatbot failure and enabling human-agent collaboration, Machine-Human Chatting Handoff (MHCH) has attracted lots of attention from both industry and academia in recent years. However, most existing methods mainly focus on the dialogue context or assist with global satisfaction prediction based on multi-task learning, which ignore the grounded relationships among the causal variables, like the user state and labor cost. These variables are significantly associated with handoff decisions, resulting in prediction bias and cost increasement. Therefore, we propose Causal-Enhance Module (CEM) by establishing the causal graph of MHCH based on these two variables, which is a simple yet effective module and can be easy to plug into the existing MHCH methods. For the impact of users, we use the user state to correct the prediction bias according to the causal relationship of multi-task. For the labor cost, we train an auxiliary cost simulator to calculate unbiased labor cost through counterfactual learning so that a model becomes cost-aware.Extensive experiments conducted on four real-world benchmarks demonstrate the effectiveness of CEM in generally improving the performance of existing MHCH methods without any elaborated model crafting.
Search
Co-authors
- Zhongzhan Huang 2
- Jinghui Qin 1
- Daifeng Li 1
- Shanghua Gao 1
- Wushao Wen 1
- show all...