This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Explanation has long been a part of communications, where humans use language to elucidate each other and transmit information about the mechanisms of events. There have been numerous works that study the structures of the explanations and their utility to humans. At the same time, explanation relates to a collection of research directions in natural language processing (and more broadly, computer vision and machine learning) where researchers develop computational approaches to explain the (usually deep neural network) models. Explanation has received rising attention. In recent months, the advance of large language models (LLMs) provides unprecedented opportunities to leverage their reasoning abilities, both as tools to produce explanations and as the subjects of explanation analysis. On the other hand, the sheer sizes and the opaque nature of LLMs introduce challenges to the explanation methods. In this tutorial, we intend to review these opportunities and challenges of explanations in the era of LLMs, connect lines of research previously studied by different research groups, and hopefully spark thoughts of new research directions
How can we train models to perform well on hard test data when hard training data is by definition difficult to label correctly? This question has been termed the scalable oversight problem and has drawn increasing attention as language models have continually improved. In this paper, we present the surprising conclusion that current pretrained language models often generalize relatively well from easy to hard data, even performing as well as oracle models finetuned on hard data. We demonstrate this kind of easy-to-hard generalization using simple finetuning methods like in-context learning, linear classifier heads, and QLoRA for seven different measures of datapoint hardness, including six empirically diverse human hardness measures (like grade level) and one model-based measure (loss-based). Furthermore, we show that even if one cares most about model performance on hard data, it can be better to collect easy data rather than hard data for finetuning, since hard data is generally noisier and costlier to collect. Our experiments use open models up to 70b in size and four publicly available question-answering datasets with questions ranging in difficulty from 3rd grade science questions to college level STEM questions and general-knowledge trivia. We conclude that easy-to-hard generalization in LMs is surprisingly strong for the tasks studied.
Editing model parameters directly in Transformers makes updating open-source transformer-based models possible without re-training. However, these editing methods have only been evaluated on statements about encyclopedic knowledge with a single correct answer. Commonsense knowledge with multiple correct answers, e.g., an apple can be green or red but not transparent, has not been studied but is as essential for enhancing transformers’ reliability and usefulness. In this paper, we investigate whether commonsense judgments are causally associated with localized, editable parameters in Transformers, and we provide an affirmative answer. We find that directly applying the MEMIT editing algorithm results in sub-par performance and improve it for the commonsense domain by varying edit tokens and improving the layer selection strategy, i.e., MEMITCSK. GPT-2 Large and XL models edited using MEMITCSK outperform best-fine-tuned baselines by 10.97% and 10.73% F1 scores on PEP3k and 20Q datasets. In addition, we propose a novel evaluation dataset, PROBE\ SET, that contains unaffected and affected neighborhoods, affected paraphrases, and affected reasoning challenges. MEMITCSK performs well across the metrics while fine-tuning baselines show significant trade-offs between unaffected and affected metrics. These results suggest a compelling future direction for incorporating feedback about common sense into Transformers through direct model editing.
When pretrained language models (LMs) are applied to discriminative tasks such as multiple-choice questions, they place probability mass on vocabulary tokens that aren’t among the given answer choices. Spreading probability mass across multiple surface forms with identical meaning (such as “bath” and “bathtub”) is thought to cause an underestimation of a model’s true performance, referred to as the “surface form competition” (SFC) hypothesis. This has motivated the introduction of various probability normalization methods. However, many core questions remain unanswered. How do we measure SFC? Are there direct ways of reducing it, and does doing so improve task performance? We propose a mathematical formalism for SFC which allows us to quantify and bound its impact for the first time. We identify a simple method for reducing it—namely, increasing probability mass on the given answer choices by a) including them in the prompt and b) using in-context learning with even just one example. We show this method eliminates the impact of SFC in the majority of instances. Our experiments on three diverse datasets and six LMs reveal several additional surprising findings. For example, both normalization and prompting methods for reducing SFC can be ineffective or even detrimental to task performance for some LMs. We conclude with practical insights for effectively prompting LMs for multiple-choice tasks.
Multi-hop Question Answering (QA) is a challenging task since it requires an accurate aggregation of information from multiple context paragraphs and a thorough understanding of the underlying reasoning chains. Recent work in multi-hop QA has shown that performance can be boosted by first decomposing the questions into simpler, single-hop questions. In this paper, we explore one additional utility of the multi-hop decomposition from the perspective of explainable NLP: to create explanation by probing a neural QA model with them. We hypothesize that in doing so, users will be better able to predict when the underlying QA system will give the correct answer. Through human participant studies, we verify that exposing the decomposition probes and answers to the probes to users can increase their ability to predict system performance on a question instance basis. We show that decomposition is an effective form of probing QA systems as well as a promising approach to explanation generation. In-depth analyses show the need for improvements in decomposition systems.
Transformer-based language model approaches to automated story generation currently provide state-of-the-art results. However, they still suffer from plot incoherence when generatingnarratives over time, and critically lack basiccommonsense reasoning. Furthermore, existing methods generally focus only on single-character stories, or fail to track charactersat all. To improve the coherence of generated narratives and to expand the scope ofcharacter-centric narrative generation, we introduce Commonsense-inference Augmentedneural StoryTelling (CAST), a framework forintroducing commonsense reasoning into thegeneration process with the option to model theinteraction between multiple characters. Wefind that our CAST method produces significantly more coherent, on-topic, enjoyable andfluent stories than existing models in both thesingle-character and two-character settings inthree storytelling domains.
Large language models are increasingly capable of generating fluent-appearing text with relatively little task-specific supervision. But can these models accurately explain classification decisions? We consider the task of generating free-text explanations using human-written examples in a few-shot manner. We find that (1) authoring higher quality prompts results in higher quality generations; and (2) surprisingly, in a head-to-head comparison, crowdworkers often prefer explanations generated by GPT-3 to crowdsourced explanations in existing datasets. Our human studies also show, however, that while models often produce factual, grammatical, and sufficient explanations, they have room to improve along axes such as providing novel information and supporting the label. We create a pipeline that combines GPT-3 with a supervised filter that incorporates binary acceptability judgments from humans in the loop. Despite the intrinsic subjectivity of acceptability judgments, we demonstrate that acceptability is partially correlated with various fine-grained attributes of explanations. Our approach is able to consistently filter GPT-3-generated explanations deemed acceptable by humans.
In interpretable NLP, we require faithful rationales that reflect the model’s decision-making process for an explained instance. While prior work focuses on extractive rationales (a subset of the input words), we investigate their less-studied counterpart: free-text natural language rationales. We demonstrate that *pipelines*, models for faithful rationalization on information-extraction style tasks, do not work as well on “reasoning” tasks requiring free-text rationales. We turn to models that *jointly* predict and rationalize, a class of widely used high-performance models for free-text rationalization. We investigate the extent to which the labels and rationales predicted by these models are associated, a necessary property of faithful explanation. Via two tests, *robustness equivalence* and *feature importance agreement*, we find that state-of-the-art T5-based joint models exhibit desirable properties for explaining commonsense question-answering and natural language inference, indicating their potential for producing faithful free-text rationales.
In many settings it is important for one to be able to understand why a model made a particular prediction. In NLP this often entails extracting snippets of an input text ‘responsible for’ corresponding model output; when such a snippet comprises tokens that indeed informed the model’s prediction, it is a faithful explanation. In some settings, faithfulness may be critical to ensure transparency. Lei et al. (2016) proposed a model to produce faithful rationales for neural text classification by defining independent snippet extraction and prediction modules. However, the discrete selection over input tokens performed by this method complicates training, leading to high variance and requiring careful hyperparameter tuning. We propose a simpler variant of this approach that provides faithful explanations by construction. In our scheme, named FRESH, arbitrary feature importance scores (e.g., gradients from a trained model) are used to induce binary labels over token inputs, which an extractor can be trained to predict. An independent classifier module is then trained exclusively on snippets provided by the extractor; these snippets thus constitute faithful explanations, even if the classifier is arbitrarily complex. In both automatic and manual evaluations we find that variants of this simple framework yield predictive performance superior to ‘end-to-end’ approaches, while being more general and easier to train. Code is available at https://github.com/successar/FRESH.
The text of clinical notes can be a valuable source of patient information and clinical assessments. Historically, the primary approach for exploiting clinical notes has been information extraction: linking spans of text to concepts in a detailed domain ontology. However, recent work has demonstrated the potential of supervised machine learning to extract document-level codes directly from the raw text of clinical notes. We propose to bridge the gap between the two approaches with two novel syntheses: (1) treating extracted concepts as features, which are used to supplement or replace the text of the note; (2) treating extracted concepts as labels, which are used to learn a better representation of the text. Unfortunately, the resulting concepts do not yield performance gains on the document-level clinical coding task. We explore possible explanations and future research directions.
Attention mechanisms play a central role in NLP systems, especially within recurrent neural network (RNN) models. Recently, there has been increasing interest in whether or not the intermediate representations offered by these modules may be used to explain the reasoning for a model’s prediction, and consequently reach insights regarding the model’s decision-making process. A recent paper claims that ‘Attention is not Explanation’ (Jain and Wallace, 2019). We challenge many of the assumptions underlying this work, arguing that such a claim depends on one’s definition of explanation, and that testing it needs to take into account all elements of the model. We propose four alternative tests to determine when/whether attention can be used as explanation: a simple uniform-weights baseline; a variance calibration based on multiple random seed runs; a diagnostic framework using frozen weights from pretrained models; and an end-to-end adversarial attention training protocol. Each allows for meaningful interpretation of attention mechanisms in RNN models. We show that even when reliable adversarial distributions can be found, they don’t perform well on the simple diagnostic, indicating that prior work does not disprove the usefulness of attention mechanisms for explainability.
Clinical notes are text documents that are created by clinicians for each patient encounter. They are typically accompanied by medical codes, which describe the diagnosis and treatment. Annotating these codes is labor intensive and error prone; furthermore, the connection between the codes and the text is not annotated, obscuring the reasons and details behind specific diagnoses and treatments. We present an attentional convolutional network that predicts medical codes from clinical text. Our method aggregates information across the document using a convolutional neural network, and uses an attention mechanism to select the most relevant segments for each of the thousands of possible codes. The method is accurate, achieving precision@8 of 0.71 and a Micro-F1 of 0.54, which are both better than the prior state of the art. Furthermore, through an interpretability evaluation by a physician, we show that the attention mechanism identifies meaningful explanations for each code assignment.