Renren Jin


2024

pdf
A Comprehensive Evaluation of Quantization Strategies for Large Language Models
Renren Jin | Jiangcun Du | Wuwei Huang | Wei Liu | Jian Luan | Bin Wang | Deyi Xiong
Findings of the Association for Computational Linguistics ACL 2024

Increasing the number of parameters in large language models (LLMs) usually improves performance in downstream tasks but raises compute and memory costs, making deployment difficult in resource-limited settings. Quantization techniques, which reduce the bits needed for model weights or activations with minimal performance loss, have become popular due to the rise of LLMs. However, most quantization studies use pre-trained LLMs, and the impact of quantization on instruction-tuned LLMs and the relationship between perplexity and benchmark performance of quantized LLMs are not well understood. Evaluation of quantized LLMs is often limited to language modeling and a few classification tasks, leaving their performance on other benchmarks unclear. To address these gaps, we propose a structured evaluation framework consisting of three critical dimensions: (1) knowledge & capacity, (2) alignment, and (3) efficiency, and conduct extensive experiments across ten diverse benchmarks. Our experimental results indicate that LLMs with 4-bit quantization can retain performance comparable to their non-quantized counterparts, and perplexity can serve as a proxy metric for quantized LLMs on most benchmarks. Furthermore, quantized LLMs with larger parameter scales can outperform smaller LLMs. Despite the memory savings achieved through quantization, it can also slow down the inference speed of LLMs. Consequently, substantial engineering efforts and hardware support are imperative to achieve a balanced optimization of decoding speed and memory consumption in the context of quantized LLMs.

pdf
LHMKE: A Large-scale Holistic Multi-subject Knowledge Evaluation Benchmark for Chinese Large Language Models
Chuang Liu | Renren Jin | Yuqi Ren | Deyi Xiong
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Chinese Large Language Models (LLMs) have recently demonstrated impressive capabilities across various NLP benchmarks and real-world applications. However, the existing benchmarks for comprehensively evaluating these LLMs are still insufficient, particularly in terms of measuring knowledge that LLMs capture. Current datasets collect questions from Chinese examinations across different subjects and educational levels to address this issue. Yet, these benchmarks primarily focus on objective questions such as multiple-choice questions, leading to a lack of diversity in question types. To tackle this problem, we propose LHMKE, a Large-scale, Holistic, and Multi-subject Knowledge Evaluation benchmark in this paper. LHMKE is designed to provide a comprehensive evaluation of the knowledge acquisition capabilities of Chinese LLMs. It encompasses 10,465 questions across 75 tasks covering 30 subjects, ranging from primary school to professional certification exams. Notably, LHMKE includes both objective and subjective questions, offering a more holistic evaluation of the knowledge level of LLMs. We have assessed 11 Chinese LLMs under the zero-shot setting, which aligns with real examinations, and compared their performance across different subjects. We also conduct an in-depth analysis to check whether GPT-4 can automatically score subjective predictions. Our findings suggest that LHMKE is a challenging and advanced testbed for Chinese LLMs.

pdf bib
Evaluating Chinese Large Language Models on Discipline Knowledge Acquisition via Memorization and Robustness Assessment
Chuang Liu | Renren Jin | Mark Steedman | Deyi Xiong
Proceedings of the 1st Workshop on Data Contamination (CONDA)

Chinese LLMs demonstrate impressive performance on NLP tasks, particularly on discipline knowledge benchmarks, with some results approaching those of GPT-4. Previous research has viewed these advancements as potential outcomes of data contamination or leakage, prompting efforts to create new detection methods and address evaluation issues in LLM benchmarks. However, there has been a lack of comprehensive assessment of the evolution of Chinese LLMs. To address this gap, this paper offers a thorough investigation of Chinese LLMs on discipline knowledge evaluation, delving into the advancements of various LLMs, including a group of related models and others. Specifically, we have conducted six assessments ranging from knowledge memorization to comprehension for robustness, encompassing tasks like predicting incomplete questions and options, identifying behaviors by the contaminational fine-tuning, and answering rephrased questions. Experimental findings indicate a positive correlation between the release time of LLMs and their memorization capabilities, but they struggle with variations in original question-options pairs. Additionally, our findings suggest that question descriptions have a more significant impact on LLMs’ performance.

pdf
OpenEval: Benchmarking Chinese LLMs across Capability, Alignment and Safety
Chuang Liu | Linhao Yu | Jiaxuan Li | Renren Jin | Yufei Huang | Ling Shi | Junhui Zhang | Xinmeng Ji | Tingting Cui | Liutao Liutao | Jinwang Song | Hongying Zan | Sun Li | Deyi Xiong
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

The rapid development of Chinese large language models (LLMs) poses big challenges for efficient LLM evaluation. While current initiatives have introduced new benchmarks or evaluation platforms for assessing Chinese LLMs, many of these focus primarily on capabilities, usually overlooking potential alignment and safety issues. To address this gap, we introduce OpenEval, an evaluation testbed that benchmarks Chinese LLMs across capability, alignment and safety. For capability assessment, we include 12 benchmark datasets to evaluate Chinese LLMs from 4 sub-dimensions: NLP tasks, disciplinary knowledge, commonsense reasoning and mathematical reasoning. For alignment assessment, OpenEval contains 7 datasets that examines the bias, offensiveness and illegalness in the outputs yielded by Chinese LLMs. To evaluate safety, especially anticipated risks (e.g., power-seeking, self-awareness) of advanced LLMs, we include 6 datasets. In addition to these benchmarks, we have implemented a phased public evaluation and benchmark update strategy to ensure that OpenEval is in line with the development of Chinese LLMs or even able to provide cutting-edge benchmark datasets to guide the development of Chinese LLMs. In our first public evaluation, we have tested a range of Chinese LLMs, spanning from 7B to 72B parameters, including both open-source and proprietary models. Evaluation results indicate that while Chinese LLMs have shown impressive performance in certain tasks, more attention should be directed towards broader aspects such as commonsense reasoning, alignment, and safety.

2023

pdf
CS2W: A Chinese Spoken-to-Written Style Conversion Dataset with Multiple Conversion Types
Zishan Guo | Linhao Yu | Minghui Xu | Renren Jin | Deyi Xiong
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Spoken texts (either manual or automatic transcriptions from automatic speech recognition (ASR)) often contain disfluencies and grammatical errors, which pose tremendous challenges to downstream tasks. Converting spoken into written language is hence desirable. Unfortunately, the availability of datasets for this is limited. To address this issue, we present CS2W, a Chinese Spoken-to-Written style conversion dataset comprising 7,237 spoken sentences extracted from transcribed conversational texts. Four types of conversion problems are covered in CS2W: disfluencies, grammatical errors, ASR transcription errors, and colloquial words. Our annotation convention, data, and code are publicly available at https://github.com/guozishan/CS2W.

2022

pdf
Informative Language Representation Learning for Massively Multilingual Neural Machine Translation
Renren Jin | Deyi Xiong
Proceedings of the 29th International Conference on Computational Linguistics

In a multilingual neural machine translation model that fully shares parameters across all languages, an artificial language token is usually used to guide translation into the desired target language. However, recent studies show that prepending language tokens sometimes fails to navigate the multilingual neural machine translation models into right translation directions, especially on zero-shot translation. To mitigate this issue, we propose two methods, language embedding embodiment and language-aware multi-head attention, to learn informative language representations to channel translation into right directions. The former embodies language embeddings into different critical switching points along the information flow from the source to the target, aiming at amplifying translation direction guiding signals. The latter exploits a matrix, instead of a vector, to represent a language in the continuous space. The matrix is chunked into multiple heads so as to learn language representations in multiple subspaces. Experiment results on two datasets for massively multilingual neural machine translation demonstrate that language-aware multi-head attention benefits both supervised and zero-shot translation and significantly alleviates the off-target translation issue. Further linguistic typology prediction experiments show that matrix-based language representations learned by our methods are capable of capturing rich linguistic typology features.