Raja Sekhar Reddy Mekala


2024

pdf
EchoPrompt: Instructing the Model to Rephrase Queries for Improved In-context Learning
Raja Sekhar Reddy Mekala | Yasaman Razeghi | Sameer Singh
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Language models are achieving impressive performance on various tasks by aggressively adopting inference-time prompting techniques,such as zero-shot and few-shot prompting. In this work, we introduce EchoPrompt, a simple yet effective approach that prompts the model to rephrase its queries before answering them. EchoPrompt is tailored for four scenarios, including standard and chain-of-thought prompting, in both zero-shot and few-shot settings. Experimental results show that EchoPrompt yields substantial improvementsacross all these settings for four families of causal language models. These improvements are observed across various numerical reasoning (e.g., GSM8K, SVAMP), reading comprehension (e.g., DROP), and logical reasoning (e.g., Coin flipping) tasks. On average, EchoPrompt improves the Zero-shot-CoT performance of code-davinci-002 by 5% in numerical tasks and 13% in reading comprehension tasks. Our empirical results indicate that EchoPrompt is an effective technique that enhances in-context learning performance.

2022

pdf
Snoopy: An Online Interface for Exploring the Effect of Pretraining Term Frequencies on Few-Shot LM Performance
Yasaman Razeghi | Raja Sekhar Reddy Mekala | Robert L Logan Iv | Matt Gardner | Sameer Singh
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Current evaluation schemes for large language models often fail to consider the impact of the overlap between pretraining corpus and test data on model performance statistics. Snoopy is an online interface that allows researchers to study this impact in few-shot learning settings. Our demo provides term frequency statistics for the Pile, which is an 800 GB corpus, accompanied by the precomputed performance of EleutherAI/GPT models on more than 20 NLP benchmarks, including numerical, commonsense reasoning, natural language understanding, and question-answering tasks. Snoopy allows a user to interactively align specific terms in test instances with their frequency in the Pile, enabling exploratory analysis of how term frequency is related to the accuracy of the models, which are hard to discover through automated means. A user can look at correlations over various model sizes and numbers of in-context examples and visualize the result across multiple (potentially aggregated) datasets. Using Snoopy, we show that a researcher can quickly replicate prior analyses for numerical tasks, while simultaneously allowing for much more expansive exploration that was previously challenging. Snoopy is available at https://nlp.ics.uci.edu/snoopy.