This paper focuses on automatically generating the text of an ad, and the goal is that the generated text can capture user interest for achieving higher click-through rate (CTR). We propose CREATER, a CTR-driven advertising text generation approach, to generate ad texts based on high-quality user reviews. To incorporate CTR objective, our model learns from online A/B test data with contrastive learning, which encourages the model to generate ad texts that obtain higher CTR. To make use of large-scale unpaired reviews, we design a customized self-supervised objective reducing the gap between pre-training and fine-tuning. Experiments on industrial datasets show that CREATER significantly outperforms current approaches. It has been deployed online in a leading advertising platform and brings uplift on core online metrics.
Emotion-cause pair extraction aims to extract all emotion clauses coupled with their cause clauses from a given document. Previous work employs two-step approaches, in which the first step extracts emotion clauses and cause clauses separately, and the second step trains a classifier to filter out negative pairs. However, such pipeline-style system for emotion-cause pair extraction is suboptimal because it suffers from error propagation and the two steps may not adapt to each other well. In this paper, we tackle emotion-cause pair extraction from a ranking perspective, i.e., ranking clause pair candidates in a document, and propose a one-step neural approach which emphasizes inter-clause modeling to perform end-to-end extraction. It models the interrelations between the clauses in a document to learn clause representations with graph attention, and enhances clause pair representations with kernel-based relative position embedding for effective ranking. Experimental results show that our approach significantly outperforms the current two-step systems, especially in the condition of extracting multiple pairs in one document.
Automatically verifying rumorous information has become an important and challenging task in natural language processing and social media analytics. Previous studies reveal that people’s stances towards rumorous messages can provide indicative clues for identifying the veracity of rumors, and thus determining the stances of public reactions is a crucial preceding step for rumor veracity prediction. In this paper, we propose a hierarchical multi-task learning framework for jointly predicting rumor stance and veracity on Twitter, which consists of two components. The bottom component of our framework classifies the stances of tweets in a conversation discussing a rumor via modeling the structural property based on a novel graph convolutional network. The top component predicts the rumor veracity by exploiting the temporal dynamics of stance evolution. Experimental results on two benchmark datasets show that our method outperforms previous methods in both rumor stance classification and veracity prediction.