Nikolaos Aletras


2024

pdf
Improving Multimodal Classification of Social Media Posts by Leveraging Image-Text Auxiliary Tasks
Danae Sanchez Villegas | Daniel Preotiuc-Pietro | Nikolaos Aletras
Findings of the Association for Computational Linguistics: EACL 2024

Effectively leveraging multimodal information from social media posts is essential to various downstream tasks such as sentiment analysis, sarcasm detection or hate speech classification. Jointly modeling text and images is challenging because cross-modal semantics might be hidden or the relation between image and text is weak. However, prior work on multimodal classification of social media posts has not yet addressed these challenges. In this work, we present an extensive study on the effectiveness of using two auxiliary losses jointly with the main task during fine-tuning multimodal models. First, Image-Text Contrastive (ITC) is designed to minimize the distance between image-text representations within a post, thereby effectively bridging the gap between posts where the image plays an important role in conveying the post’s meaning. Second, Image-Text Matching (ITM) enhances the model’s ability to understand the semantic relationship between images and text, thus improving its capacity to handle ambiguous or loosely related posts. We combine these objectives with five multimodal models, demonstrating consistent improvements of up to 2.6 F1 score across five diverse social media datasets. Our comprehensive analysis shows the specific scenarios where each auxiliary task is most effective.

pdf
Bayesian Prompt Ensembles: Model Uncertainty Estimation for Black-Box Large Language Models
Francesco Tonolini | Nikolaos Aletras | Jordan Massiah | Gabriella Kazai
Findings of the Association for Computational Linguistics ACL 2024

An important requirement for the reliable deployment of pre-trained large language models (LLMs) is the well-calibrated quantification of the uncertainty in their outputs. While the likelihood of predicting the next token is a practical surrogate of the data uncertainty learned during training, model uncertainty is challenging to estimate, i.e., due to lack of knowledge acquired during training. Prior efforts to quantify uncertainty of neural networks require specific architectures or (re-)training strategies, which are impractical to apply to LLMs with several billion parameters, or for black-box models where the architecture and parameters are not available. In this paper, we propose Bayesian Prompts Ensembles (BayesPE), a novel approach to effectively obtain well-calibrated uncertainty for the output of pre-trained LLMs. BayesPE computes output probabilities through a weighted ensemble of different, but semantically equivalent, task instruction prompts. The relative weights of the different prompts in the ensemble are estimated through approximate Bayesian variational inference over a small labeled validation set. We demonstrate that BayesPE approximates a Bayesian input layer for the LLM, providing a lower bound on the expected model error. In our extensive experiments, we show that BayesPE achieves significantly superior uncertainty calibration compared to several baselines over a range of natural language classification tasks, both in zero- and few-shot settings.

pdf
Comparing Explanation Faithfulness between Multilingual and Monolingual Fine-tuned Language Models
Zhixue Zhao | Nikolaos Aletras
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

In many real natural language processing application scenarios, practitioners not only aim to maximize predictive performance but also seek faithful explanations for the model predictions. Rationales and importance distribution given by feature attribution methods (FAs) provide insights into how different parts of the input contribute to a prediction. Previous studies have explored how different factors affect faithfulness, mainly in the context of monolingual English models. On the other hand, the differences in FA faithfulness between multilingual and monolingual models have yet to be explored. Our extensive experiments, covering five languages and five popular FAs, show that FA faithfulness varies between multilingual and monolingual models. We find that the larger the multilingual model, the less faithful the FAs are compared to its counterpart monolingual models. Our further analysis shows that the faithfulness disparity is potentially driven by the differences between model tokenizers. Our code is available: https://github.com/casszhao/multilingual-faith.

pdf bib
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
Nikolaos Aletras | Orphee De Clercq
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

pdf
Examining the Limitations of Computational Rumor Detection Models Trained on Static Datasets
Yida Mu | Xingyi Song | Kalina Bontcheva | Nikolaos Aletras
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

A crucial aspect of a rumor detection model is its ability to generalize, particularly its ability to detect emerging, previously unknown rumors. Past research has indicated that content-based (i.e., using solely source post as input) rumor detection models tend to perform less effectively on unseen rumors. At the same time, the potential of context-based models remains largely untapped. The main contribution of this paper is in the in-depth evaluation of the performance gap between content and context-based models specifically on detecting new, unseen rumors. Our empirical findings demonstrate that context-based models are still overly dependent on the information derived from the rumors’ source post and tend to overlook the significant role that contextual information can play. We also study the effect of data split strategies on classifier performance. Based on our experimental results, the paper also offers practical suggestions on how to minimize the effects of temporal concept drift in static datasets during the training of rumor detection methods.

pdf
Navigating Prompt Complexity for Zero-Shot Classification: A Study of Large Language Models in Computational Social Science
Yida Mu | Ben P. Wu | William Thorne | Ambrose Robinson | Nikolaos Aletras | Carolina Scarton | Kalina Bontcheva | Xingyi Song
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Instruction-tuned Large Language Models (LLMs) have exhibited impressive language understanding and the capacity to generate responses that follow specific prompts. However, due to the computational demands associated with training these models, their applications often adopt a zero-shot setting. In this paper, we evaluate the zero-shot performance of two publicly accessible LLMs, ChatGPT and OpenAssistant, in the context of six Computational Social Science classification tasks, while also investigating the effects of various prompting strategies. Our experiments investigate the impact of prompt complexity, including the effect of incorporating label definitions into the prompt; use of synonyms for label names; and the influence of integrating past memories during foundation model training. The findings indicate that in a zero-shot setting, current LLMs are unable to match the performance of smaller, fine-tuned baseline transformer models (such as BERT-large). Additionally, we find that different prompting strategies can significantly affect classification accuracy, with variations in accuracy and F1 scores exceeding 10%.

pdf
RISE: Robust Early-exiting Internal Classifiers for Suicide Risk Evaluation
Ritesh Singh Soun | Atula Tejaswi Neerkaje | Ramit Sawhney | Nikolaos Aletras | Preslav Nakov
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Suicide is a serious public health issue, but it is preventable with timely intervention. Emerging studies have suggested there is a noticeable increase in the number of individuals sharing suicidal thoughts online. As a result, utilising advance Natural Language Processing techniques to build automated systems for risk assessment is a viable alternative. However, existing systems are prone to incorrectly predicting risk severity and have no early detection mechanisms. Therefore, we propose RISE, a novel robust mechanism for accurate early detection of suicide risk by ensembling Hyperbolic Internal Classifiers equipped with an abstention mechanism and early-exit inference capabilities. Through quantitative, qualitative and ablative experiments, we demonstrate RISE as an efficient and robust human-in-the-loop approach for risk assessment over the Columbia Suicide Severity Risk Scale (C-SSRS) and CLPsych 2022 datasets. It is able to successfully abstain from 84% incorrect predictions on Reddit data while out-predicting state of the art models upto 3.5x earlier.

pdf
Who Is Bragging More Online? A Large Scale Analysis of Bragging in Social Media
Mali Jin | Daniel Preotiuc-Pietro | A. Seza Doğruöz | Nikolaos Aletras
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Bragging is the act of uttering statements that are likely to be positively viewed by others and it is extensively employed in human communication with the aim to build a positive self-image of oneself. Social media is a natural platform for users to employ bragging in order to gain admiration, respect, attention and followers from their audiences. Yet, little is known about the scale of bragging online and its characteristics. This paper employs computational sociolinguistics methods to conduct the first large scale study of bragging behavior on Twitter (U.S.) by focusing on its overall prevalence, temporal dynamics and impact of demographic factors. Our study shows that the prevalence of bragging decreases over time within the same population of users. In addition, younger, more educated and popular users in the U.S. are more likely to brag. Finally, we conduct an extensive linguistics analysis to unveil specific bragging themes associated with different user traits.

pdf
On the Impact of Calibration Data in Post-training Quantization and Pruning
Miles Williams | Nikolaos Aletras
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Quantization and pruning form the foundation of compression for neural networks, enabling efficient inference for large language models (LLMs). Recently, various quantization and pruning techniques have demonstrated remarkable performance in a post-training setting. They rely upon calibration data, a small set of unlabeled examples that are used to generate layer activations. However, no prior work has systematically investigated how the calibration data impacts the effectiveness of model compression methods. In this paper, we present the first extensive empirical study on the effect of calibration data upon LLM performance. We trial a variety of quantization and pruning methods, datasets, tasks, and models. Surprisingly, we find substantial variations in downstream task performance, contrasting existing work that suggests a greater level of robustness to the calibration data. Finally, we make a series of recommendations for the effective use of calibration data in LLM quantization and pruning.

2023

pdf bib
Proceedings of the Natural Legal Language Processing Workshop 2023
Daniel Preoțiuc-Pietro | Catalina Goanta | Ilias Chalkidis | Leslie Barrett | Gerasimos Spanakis | Nikolaos Aletras
Proceedings of the Natural Legal Language Processing Workshop 2023

pdf
Regulation and NLP (RegNLP): Taming Large Language Models
Catalina Goanta | Nikolaos Aletras | Ilias Chalkidis | Sofia Ranchordás | Gerasimos Spanakis
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The scientific innovation in Natural Language Processing (NLP) and more broadly in artificial intelligence (AI) is at its fastest pace to date. As large language models (LLMs) unleash a new era of automation, important debates emerge regarding the benefits and risks of their development, deployment and use. Currently, these debates have been dominated by often polarized narratives mainly led by the AI Safety and AI Ethics movements. This polarization, often amplified by social media, is swaying political agendas on AI regulation and governance and posing issues of regulatory capture. Capture occurs when the regulator advances the interests of the industry it is supposed to regulate, or of special interest groups rather than pursuing the general public interest. Meanwhile in NLP research, attention has been increasingly paid to the discussion of regulating risks and harms. This often happens without systematic methodologies or sufficient rooting in the disciplines that inspire an extended scope of NLP research, jeopardizing the scientific integrity of these endeavors. Regulation studies are a rich source of knowledge on how to systematically deal with risk and uncertainty, as well as with scientific evidence, to evaluate and compare regulatory options. This resource has largely remained untapped so far. In this paper, we argue how NLP research on these topics can benefit from proximity to regulatory studies and adjacent fields. We do so by discussing basic tenets of regulation, and risk and uncertainty, and by highlighting the shortcomings of current NLP discussions dealing with risk assessment. Finally, we advocate for the development of a new multidisciplinary research space on regulation and NLP (RegNLP), focused on connecting scientific knowledge to regulatory processes based on systematic methodologies.

pdf
Understanding the Role of Input Token Characters in Language Models: How Does Information Loss Affect Performance?
Ahmed Alajrami | Katerina Margatina | Nikolaos Aletras
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Understanding how and what pre-trained language models (PLMs) learn about language is an open challenge in natural language processing. Previous work has focused on identifying whether they capture semantic and syntactic information, and how the data or the pre-training objective affects their performance. However, to the best of our knowledge, no previous work has specifically examined how information loss in input token characters affects the performance of PLMs. In this study, we address this gap by pre-training language models using small subsets of characters from individual tokens. Surprisingly, we find that pre-training even under extreme settings, i.e. using only one character of each token, the performance retention in standard NLU benchmarks and probing tasks compared to full-token models is high. For instance, a model pre-trained only on single first characters from tokens achieves performance retention of approximately 90% and 77% of the full-token model in SuperGLUE and GLUE tasks, respectively.

pdf
A Multimodal Analysis of Influencer Content on Twitter
Danae Sánchez Villegas | Catalina Goanta | Nikolaos Aletras
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
We Need to Talk About Classification Evaluation Metrics in NLP
Peter Vickers | Loic Barrault | Emilio Monti | Nikolaos Aletras
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
It’s about Time: Rethinking Evaluation on Rumor Detection Benchmarks using Chronological Splits
Yida Mu | Kalina Bontcheva | Nikolaos Aletras
Findings of the Association for Computational Linguistics: EACL 2023

New events emerge over time influencing the topics of rumors in social media. Current rumor detection benchmarks use random splits as training, development and test sets which typically results in topical overlaps. Consequently, models trained on random splits may not perform well on rumor classification on previously unseen topics due to the temporal concept drift. In this paper, we provide a re-evaluation of classification models on four popular rumor detection benchmarks considering chronological instead of random splits. Our experimental results show that the use of random splits can significantly overestimate predictive performance across all datasets and models. Therefore, we suggest that rumor detection models should always be evaluated using chronological splits for minimizing topical overlaps.

pdf
On the Limitations of Simulating Active Learning
Katerina Margatina | Nikolaos Aletras
Findings of the Association for Computational Linguistics: ACL 2023

Active learning (AL) is a human-and-model-in-the-loop paradigm that iteratively selects informative unlabeled data for human annotation, aiming to improve data efficiency over random sampling. However, performing AL experiments with human annotations on-the-fly is a laborious and expensive process, thus unrealistic for academic research. An easy fix to this impediment is to simulate AL, by treating an already labeled and publicly available dataset as the pool of unlabeled data. In this position paper, we first survey recent literature and highlight the challenges across all different steps within the AL loop. We further unveil neglected caveats in the experimental setup that can significantly affect the quality of AL research. We continue with an exploration of how the simulation setting can govern empirical findings, arguing that it might be one of the answers behind the ever posed question “Why do Active Learning algorithms sometimes fail to outperform random sampling?”. We argue that evaluating AL algorithms on available labeled datasets might provide a lower bound as to their effectiveness in real data. We believe it is essential to collectively shape the best practices for AL research, especially now that the stellar engineering advances (e.g. ChatGPT) shift the research focus to data-driven approaches. To this end, we present guidelines for future work, hoping that by bringing these limitations to the community’s attention, we can explore ways to address them.

pdf
Rethinking Semi-supervised Learning with Language Models
Zhengxiang Shi | Francesco Tonolini | Nikolaos Aletras | Emine Yilmaz | Gabriella Kazai | Yunlong Jiao
Findings of the Association for Computational Linguistics: ACL 2023

Semi-supervised learning (SSL) is a popular setting aiming to effectively utilize unlabelled data to improve model performance in downstream natural language processing (NLP) tasks. Currently, there are two popular approaches to make use of the unlabelled data: Self-training (ST) and Task-adaptive pre-training (TAPT). ST uses a teacher model to assign pseudo-labels to the unlabelled data, while TAPT continues pre-training on the unlabelled data before fine-tuning. To the best of our knowledge, the effectiveness of TAPT in SSL tasks has not been systematically studied, and no previous work has directly compared TAPT and ST in terms of their ability to utilize the pool of unlabelled data. In this paper, we provide an extensive empirical study comparing five state-of-the-art ST approaches and TAPT across various NLP tasks and data sizes, including in- and out-of domain settings. Surprisingly, we find that TAPT is a strong and more robust SSL learner, even when using just a few hundred unlabelled samples or in the presence of domain shifts, compared to more sophisticated ST approaches, and tends to bring greater improvements in SSL than in fully-supervised settings. Our further analysis demonstrates the risks of using ST approaches when the size of labelled or unlabelled data is small or when domain shifts exist, and highlights TAPT as a potential solution.

pdf
Active Learning Principles for In-Context Learning with Large Language Models
Katerina Margatina | Timo Schick | Nikolaos Aletras | Jane Dwivedi-Yu
Findings of the Association for Computational Linguistics: EMNLP 2023

The remarkable advancements in large language models (LLMs) have significantly enhanced predictive performance in few-shot learning settings. By using only a small number of labeled examples, referred to as demonstrations, LLMs can effectively perform the task at hand through in-context learning. However, the process of selecting demonstrations for maximizing performance has received limited attention in prior work. This paper addresses the issue of identifying the most informative demonstrations for few-shot learning by approaching it as a pool-based Active Learning (AL) problem over a single iteration. We compare standard AL algorithms based on uncertainty, diversity, and similarity, and consistently observe that the latter outperforms all other methods, including random sampling. Our extensive experimentation involving a diverse range of GPT and OPT models across 24 classification and multi-choice tasks, coupled with thorough analysis, unambiguously demonstrates the importance of using demonstrations that are semantically similar to the domain of the test examples. In fact, we show higher average classification performance using “similar” demonstrations with GPT-2 (124M) than random demonstrations with GPT-Neox (20B). Notably, while diversity sampling shows promise, uncertainty sampling, despite its success in conventional supervised learning AL scenarios, performs poorly in in-context learning.

pdf
Pit One Against Many: Leveraging Attention-head Embeddings for Parameter-efficient Multi-head Attention
Huiyin Xue | Nikolaos Aletras
Findings of the Association for Computational Linguistics: EMNLP 2023

Scaling pre-trained language models has resulted in large performance gains in various natural language processing tasks but comes with a large cost in memory requirements. Inspired by the position embeddings in transformers, we aim to simplify and reduce the memory footprint of the multi-head attention (MHA) mechanism. We propose an alternative module that uses only a single shared projection matrix and multiple head embeddings (MHE), i.e. one per head. We empirically demonstrate that our MHE attention is substantially more memory efficient compared to alternative attention mechanisms while achieving high predictive performance retention ratio to vanilla MHA on several downstream tasks. MHE attention only requires a negligible fraction of additional parameters (3nd, where n is the number of attention heads and d the size of the head embeddings) compared to a single-head attention, while MHA requires (3n2-3n)d2-3nd additional parameters.

pdf
Schema-Guided User Satisfaction Modeling for Task-Oriented Dialogues
Yue Feng | Yunlong Jiao | Animesh Prasad | Nikolaos Aletras | Emine Yilmaz | Gabriella Kazai
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

User Satisfaction Modeling (USM) is one of the popular choices for task-oriented dialogue systems evaluation, where user satisfaction typically depends on whether the user’s task goals were fulfilled by the system. Task-oriented dialogue systems use task schema, which is a set of task attributes, to encode the user’s task goals. Existing studies on USM neglect explicitly modeling the user’s task goals fulfillment using the task schema. In this paper, we propose SG-USM, a novel schema-guided user satisfaction modeling framework. It explicitly models the degree to which the user’s preferences regarding the task attributes are fulfilled by the system for predicting the user’s satisfaction level. SG-USM employs a pre-trained language model for encoding dialogue context and task attributes. Further, it employs a fulfillment representation layer for learning how many task attributes have been fulfilled in the dialogue, an importance predictor component for calculating the importance of task attributes. Finally, it predicts the user satisfaction based on task attribute fulfillment and task attribute importance. Experimental results on benchmark datasets (i.e. MWOZ, SGD, ReDial, and JDDC) show that SG-USM consistently outperforms competitive existing methods. Our extensive analysis demonstrates that SG-USM can improve the interpretability of user satisfaction modeling, has good scalability as it can effectively deal with unseen tasks and can also effectively work in low-resource settings by leveraging unlabeled data. Code is available at https://github.com/amzn/user-satisfaction-modeling.

pdf
Incorporating Attribution Importance for Improving Faithfulness Metrics
Zhixue Zhao | Nikolaos Aletras
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Feature attribution methods (FAs) are popular approaches for providing insights into the model reasoning process of making predictions. The more faithful a FA is, the more accurately it reflects which parts of the input are more important for the prediction. Widely used faithfulness metrics, such as sufficiency and comprehensiveness use a hard erasure criterion, i.e. entirely removing or retaining the top most important tokens ranked by a given FA and observing the changes in predictive likelihood. However, this hard criterion ignores the importance of each individual token, treating them all equally for computing sufficiency and comprehensiveness. In this paper, we propose a simple yet effective soft erasure criterion. Instead of entirely removing or retaining tokens from the input, we randomly mask parts of the token vector representations proportionately to their FA importance. Extensive experiments across various natural language processing tasks and different FAs show that our soft-sufficiency and soft-comprehensiveness metrics consistently prefer more faithful explanations compared to hard sufficiency and comprehensiveness.

pdf
Trading Syntax Trees for Wordpieces: Target-oriented Opinion Words Extraction with Wordpieces and Aspect Enhancement
Samuel Mensah | Kai Sun | Nikolaos Aletras
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

State-of-the-art target-oriented opinion word extraction (TOWE) models typically use BERT-based text encoders that operate on the word level, along with graph convolutional networks (GCNs) that incorporate syntactic information extracted from syntax trees. These methods achieve limited gains with GCNs and have difficulty using BERT wordpieces. Meanwhile, BERT wordpieces are known to be effective at representing rare words or words with insufficient context information. To address this issue, this work trades syntax trees for BERT wordpieces by entirely removing the GCN component from the methods’ architectures. To enhance TOWE performance, we tackle the issue of aspect representation loss during encoding. Instead of solely utilizing a sentence as the input, we use a sentence-aspect pair. Our relatively simple approach achieves state-of-the-art results on benchmark datasets and should serve as a strong baseline for further research.

2022

pdf
Improving Graph-Based Text Representations with Character and Word Level N-grams
Wenzhe Li | Nikolaos Aletras
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Graph-based text representation focuses on how text documents are represented as graphs for exploiting dependency information between tokens and documents within a corpus. Despite the increasing interest in graph representation learning, there is limited research in exploring new ways for graph-based text representation, which is important in downstream natural language processing tasks. In this paper, we first propose a new heterogeneous word-character text graph that combines word and character n-gram nodes together with document nodes, allowing us to better learn dependencies among these entities. Additionally, we propose two new graph-based neural models, WCTextGCN and WCTextGAT, for modeling our proposed text graph. Extensive experiments in text classification and automatic text summarization benchmarks demonstrate that our proposed models consistently outperform competitive baselines and state-of-the-art graph-based models.

pdf
Domain Classification-based Source-specific Term Penalization for Domain Adaptation in Hate-speech Detection
Tulika Bose | Nikolaos Aletras | Irina Illina | Dominique Fohr
Proceedings of the 29th International Conference on Computational Linguistics

State-of-the-art approaches for hate-speech detection usually exhibit poor performance in out-of-domain settings. This occurs, typically, due to classifiers overemphasizing source-specific information that negatively impacts its domain invariance. Prior work has attempted to penalize terms related to hate-speech from manually curated lists using feature attribution methods, which quantify the importance assigned to input terms by the classifier when making a prediction. We, instead, propose a domain adaptation approach that automatically extracts and penalizes source-specific terms using a domain classifier, which learns to differentiate between domains, and feature-attribution scores for hate-speech classes, yielding consistent improvements in cross-domain evaluation.

pdf
Dynamically Refined Regularization for Improving Cross-corpora Hate Speech Detection
Tulika Bose | Nikolaos Aletras | Irina Illina | Dominique Fohr
Findings of the Association for Computational Linguistics: ACL 2022

Hate speech classifiers exhibit substantial performance degradation when evaluated on datasets different from the source. This is due to learning spurious correlations between words that are not necessarily relevant to hateful language, and hate speech labels from the training corpus. Previous work has attempted to mitigate this problem by regularizing specific terms from pre-defined static dictionaries. While this has been demonstrated to improve the generalizability of classifiers, the coverage of such methods is limited and the dictionaries require regular manual updates from human experts. In this paper, we propose to automatically identify and reduce spurious correlations using attribution methods with dynamic refinement of the list of terms that need to be regularized during training. Our approach is flexible and improves the cross-corpora performance over previous work independently and in combination with pre-defined dictionaries.

pdf
Translation Error Detection as Rationale Extraction
Marina Fomicheva | Lucia Specia | Nikolaos Aletras
Findings of the Association for Computational Linguistics: ACL 2022

Recent Quality Estimation (QE) models based on multilingual pre-trained representations have achieved very competitive results in predicting the overall quality of translated sentences. However, detecting specifically which translated words are incorrect is a more challenging task, especially when dealing with limited amounts of training data. We hypothesize that, not unlike humans, successful QE models rely on translation errors to predict overall sentence quality. By exploring a set of feature attribution methods that assign relevance scores to the inputs to explain model predictions, we study the behaviour of state-of-the-art sentence-level QE models and show that explanations (i.e. rationales) extracted from these models can indeed be used to detect translation errors. We therefore (i) introduce a novel semi-supervised method for word-level QE; and (ii) propose to use the QE task as a new benchmark for evaluating the plausibility of feature attribution, i.e. how interpretable model explanations are to humans.

pdf
A Hierarchical N-Gram Framework for Zero-Shot Link Prediction
Mingchen Li | Junfan Chen | Samuel Mensah | Nikolaos Aletras | Xiulong Yang | Yang Ye
Findings of the Association for Computational Linguistics: EMNLP 2022

Knowledge graphs typically contain a large number of entities but often cover only a fraction of all relations between them (i.e., incompleteness). Zero-shot link prediction (ZSLP) is a popular way to tackle the problem by automatically identifying unobserved relations between entities. Most recent approaches use textual features of relations (e.g., surface name or textual descriptions) as auxiliary information to improve the encoded representation. These methods lack robustness as they are bound to support only tokens from a fixed vocabulary and unable to model out-of-vocabulary (OOV) words. Subword units such as character n-grams have the capability of generating more expressive representations for OOV words. Hence, in this paper, we propose a Hierarchical N-gram framework for Zero-Shot Link Prediction (HNZSLP) that leverages character n-gram information for ZSLP. Our approach works by first constructing a hierarchical n-gram graph from the surface name of relations. Subsequently, a new Transformer-based network models the hierarchical n-gram graph to learn a relation embedding for ZSLP. Experimental results show that our proposed HNZSLP method achieves state-of-the-art performance on two standard ZSLP datasets.

pdf
On the Impact of Temporal Concept Drift on Model Explanations
Zhixue Zhao | George Chrysostomou | Kalina Bontcheva | Nikolaos Aletras
Findings of the Association for Computational Linguistics: EMNLP 2022

Explanation faithfulness of model predictions in natural language processing is typically evaluated on held-out data from the same temporal distribution as the training data (i.e. synchronous settings). While model performance often deteriorates due to temporal variation (i.e. temporal concept drift), it is currently unknown how explanation faithfulness is impacted when the time span of the target data is different from the data used to train the model (i.e. asynchronous settings). For this purpose, we examine the impact of temporal variation on model explanations extracted by eight feature attribution methods and three select-then-predict models across six text classification tasks. Our experiments show that (i) faithfulness is not consistent under temporal variations across feature attribution methods (e.g. it decreases or increases depending on the method), with an attention-based method demonstrating the most robust faithfulness scores across datasets; and (ii) select-then-predict models are mostly robust in asynchronous settings with only small degradation in predictive performance. Finally, feature attribution methods show conflicting behavior when used in FRESH (i.e. a select-and-predict model) and for measuring sufficiency/comprehensiveness (i.e. as post-hoc methods), suggesting that we need more robust metrics to evaluate post-hoc explanation faithfulness. Code will be made publicly available.

pdf
Combining Humor and Sarcasm for Improving Political Parody Detection
Xiao Ao | Danae Sanchez Villegas | Daniel Preotiuc-Pietro | Nikolaos Aletras
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Parody is a figurative device used for mimicking entities for comedic or critical purposes. Parody is intentionally humorous and often involves sarcasm. This paper explores jointly modelling these figurative tropes with the goal of improving performance of political parody detection in tweets. To this end, we present a multi-encoder model that combines three parallel encoders to enrich parody-specific representations with humor and sarcasm information. Experiments on a publicly available data set of political parody tweets demonstrate that our approach outperforms previous state-of-the-art methods.

pdf
HashFormers: Towards Vocabulary-independent Pre-trained Transformers
Huiyin Xue | Nikolaos Aletras
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Transformer-based pre-trained language models are vocabulary-dependent, mapping by default each token to its corresponding embedding. This one-to-one mapping results into embedding matrices that occupy a lot of memory (i.e. millions of parameters) and grow linearly with the size of the vocabulary. Previous work on on-device transformers dynamically generate token embeddings on-the-fly without embedding matrices using locality-sensitive hashing over morphological information. These embeddings are subsequently fed into transformer layers for text classification. However, these methods are not pre-trained. Inspired by this line of work, we propose HashFormers, a new family of vocabulary-independent pre-trained transformers that support an unlimited vocabulary (i.e. all possible tokens in a corpus) given a substantially smaller fixed-sized embedding matrix. We achieve this by first introducing computationally cheap hashing functions that bucket together individual tokens to embeddings. We also propose three variants that do not require an embedding matrix at all, further reducing the memory requirements. We empirically demonstrate that HashFormers are more memory efficient compared to standard pre-trained transformers while achieving comparable predictive performance when fine-tuned on multiple text classification tasks. For example, our most efficient HashFormer variant has a negligible performance degradation (0.4% on GLUE) using only 99.1K parameters for representing the embeddings compared to 12.3-38M parameters of state-of-the-art models.

pdf bib
Proceedings of the Natural Legal Language Processing Workshop 2022
Nikolaos Aletras | Ilias Chalkidis | Leslie Barrett | Cătălina Goanță | Daniel Preoțiuc-Pietro
Proceedings of the Natural Legal Language Processing Workshop 2022

pdf
Automatic Identification and Classification of Bragging in Social Media
Mali Jin | Daniel Preotiuc-Pietro | A. Seza Doğruöz | Nikolaos Aletras
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Bragging is a speech act employed with the goal of constructing a favorable self-image through positive statements about oneself. It is widespread in daily communication and especially popular in social media, where users aim to build a positive image of their persona directly or indirectly. In this paper, we present the first large scale study of bragging in computational linguistics, building on previous research in linguistics and pragmatics. To facilitate this, we introduce a new publicly available data set of tweets annotated for bragging and their types. We empirically evaluate different transformer-based models injected with linguistic information in (a) binary bragging classification, i.e., if tweets contain bragging statements or not; and (b) multi-class bragging type prediction including not bragging. Our results show that our models can predict bragging with macro F1 up to 72.42 and 35.95 in the binary and multi-class classification tasks respectively. Finally, we present an extensive linguistic and error analysis of bragging prediction to guide future research on this topic.

pdf
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English
Ilias Chalkidis | Abhik Jana | Dirk Hartung | Michael Bommarito | Ion Androutsopoulos | Daniel Katz | Nikolaos Aletras
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Laws and their interpretations, legal arguments and agreements are typically expressed in writing, leading to the production of vast corpora of legal text. Their analysis, which is at the center of legal practice, becomes increasingly elaborate as these collections grow in size. Natural language understanding (NLU) technologies can be a valuable tool to support legal practitioners in these endeavors. Their usefulness, however, largely depends on whether current state-of-the-art models can generalize across various tasks in the legal domain. To answer this currently open question, we introduce the Legal General Language Understanding Evaluation (LexGLUE) benchmark, a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks in a standardized way. We also provide an evaluation and analysis of several generic and legal-oriented models demonstrating that the latter consistently offer performance improvements across multiple tasks.

pdf
An Empirical Study on Explanations in Out-of-Domain Settings
George Chrysostomou | Nikolaos Aletras
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent work in Natural Language Processing has focused on developing approaches that extract faithful explanations, either via identifying the most important tokens in the input (i.e. post-hoc explanations) or by designing inherently faithful models that first select the most important tokens and then use them to predict the correct label (i.e. select-then-predict models). Currently, these approaches are largely evaluated on in-domain settings. Yet, little is known about how post-hoc explanations and inherently faithful models perform in out-of-domain settings. In this paper, we conduct an extensive empirical study that examines: (1) the out-of-domain faithfulness of post-hoc explanations, generated by five feature attribution methods; and (2) the out-of-domain performance of two inherently faithful models over six datasets. Contrary to our expectations, results show that in many cases out-of-domain post-hoc explanation faithfulness measured by sufficiency and comprehensiveness is higher compared to in-domain. We find this misleading and suggest using a random baseline as a yardstick for evaluating post-hoc explanation faithfulness. Our findings also show that select-then predict models demonstrate comparable predictive performance in out-of-domain settings to full-text trained models.

pdf
How does the pre-training objective affect what large language models learn about linguistic properties?
Ahmed Alajrami | Nikolaos Aletras
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Several pre-training objectives, such as masked language modeling (MLM), have been proposed to pre-train language models (e.g. BERT) with the aim of learning better language representations. However, to the best of our knowledge, no previous work so far has investigated how different pre-training objectives affect what BERT learns about linguistics properties. We hypothesize that linguistically motivated objectives such as MLM should help BERT to acquire better linguistic knowledge compared to other non-linguistically motivated objectives that are not intuitive or hard for humans to guess the association between the input and the label to be predicted. To this end, we pre-train BERT with two linguistically motivated objectives and three non-linguistically motivated ones. We then probe for linguistic characteristics encoded in the representation of the resulting models. We find strong evidence that there are only small differences in probing performance between the representations learned by the two different types of objectives. These surprising results question the dominant narrative of linguistically informed pre-training.

pdf
On the Importance of Effectively Adapting Pretrained Language Models for Active Learning
Katerina Margatina | Loic Barrault | Nikolaos Aletras
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Recent active learning (AL) approaches in Natural Language Processing (NLP) proposed using off-the-shelf pretrained language models (LMs). In this paper, we argue that these LMs are not adapted effectively to the downstream task during AL and we explore ways to address this issue. We suggest to first adapt the pretrained LM to the target task by continuing training with all the available unlabeled data and then use it for AL. We also propose a simple yet effective fine-tuning method to ensure that the adapted LM is properly trained in both low and high resource scenarios during AL. Our experiments demonstrate that our approach provides substantial data efficiency improvements compared to the standard fine-tuning approach, suggesting that a poor training strategy can be catastrophic for AL.

2021

pdf bib
Proceedings of the Natural Legal Language Processing Workshop 2021
Nikolaos Aletras | Ion Androutsopoulos | Leslie Barrett | Catalina Goanta | Daniel Preotiuc-Pietro
Proceedings of the Natural Legal Language Processing Workshop 2021

pdf
Improving the Faithfulness of Attention-based Explanations with Task-specific Information for Text Classification
George Chrysostomou | Nikolaos Aletras
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Neural network architectures in natural language processing often use attention mechanisms to produce probability distributions over input token representations. Attention has empirically been demonstrated to improve performance in various tasks, while its weights have been extensively used as explanations for model predictions. Recent studies (Jain and Wallace, 2019; Serrano and Smith, 2019; Wiegreffe and Pinter, 2019) have showed that it cannot generally be considered as a faithful explanation (Jacovi and Goldberg, 2020) across encoders and tasks. In this paper, we seek to improve the faithfulness of attention-based explanations for text classification. We achieve this by proposing a new family of Task-Scaling (TaSc) mechanisms that learn task-specific non-contextualised information to scale the original attention weights. Evaluation tests for explanation faithfulness, show that the three proposed variants of TaSc improve attention-based explanations across two attention mechanisms, five encoders and five text classification datasets without sacrificing predictive performance. Finally, we demonstrate that TaSc consistently provides more faithful attention-based explanations compared to three widely-used interpretability techniques.

pdf
In Factuality: Efficient Integration of Relevant Facts for Visual Question Answering
Peter Vickers | Nikolaos Aletras | Emilio Monti | Loïc Barrault
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Visual Question Answering (VQA) methods aim at leveraging visual input to answer questions that may require complex reasoning over entities. Current models are trained on labelled data that may be insufficient to learn complex knowledge representations. In this paper, we propose a new method to enhance the reasoning capabilities of a multi-modal pretrained model (Vision+Language BERT) by integrating facts extracted from an external knowledge base. Evaluation on the KVQA dataset benchmark demonstrates that our method outperforms competitive baselines by 19%, achieving new state-of-the-art results. We also perform an extensive analysis highlighting the limitations of our best performing model through an ablation study.

pdf
On the Ethical Limits of Natural Language Processing on Legal Text
Dimitrios Tsarapatsanis | Nikolaos Aletras
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Analyzing Online Political Advertisements
Danae Sánchez Villegas | Saeid Mokaram | Nikolaos Aletras
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Knowledge Distillation for Quality Estimation
Amit Gajbhiye | Marina Fomicheva | Fernando Alva-Manchego | Frédéric Blain | Abiola Obamuyide | Nikolaos Aletras | Lucia Specia
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Paragraph-level Rationale Extraction through Regularization: A case study on European Court of Human Rights Cases
Ilias Chalkidis | Manos Fergadiotis | Dimitrios Tsarapatsanis | Nikolaos Aletras | Ion Androutsopoulos | Prodromos Malakasiotis
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Interpretability or explainability is an emerging research field in NLP. From a user-centric point of view, the goal is to build models that provide proper justification for their decisions, similar to those of humans, by requiring the models to satisfy additional constraints. To this end, we introduce a new application on legal text where, contrary to mainstream literature targeting word-level rationales, we conceive rationales as selected paragraphs in multi-paragraph structured court cases. We also release a new dataset comprising European Court of Human Rights cases, including annotations for paragraph-level rationales. We use this dataset to study the effect of already proposed rationale constraints, i.e., sparsity, continuity, and comprehensiveness, formulated as regularizers. Our findings indicate that some of these constraints are not beneficial in paragraph-level rationale extraction, while others need re-formulation to better handle the multi-label nature of the task we consider. We also introduce a new constraint, singularity, which further improves the quality of rationales, even compared with noisy rationale supervision. Experimental results indicate that the newly introduced task is very challenging and there is a large scope for further research.

pdf
Modeling the Severity of Complaints in Social Media
Mali Jin | Nikolaos Aletras
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The speech act of complaining is used by humans to communicate a negative mismatch between reality and expectations as a reaction to an unfavorable situation. Linguistic theory of pragmatics categorizes complaints into various severity levels based on the face-threat that the complainer is willing to undertake. This is particularly useful for understanding the intent of complainers and how humans develop suitable apology strategies. In this paper, we study the severity level of complaints for the first time in computational linguistics. To facilitate this, we enrich a publicly available data set of complaints with four severity categories and train different transformer-based networks combined with linguistic information achieving 55.7 macro F1. We also jointly model binary complaint classification and complaint severity in a multi-task setting achieving new state-of-the-art results on binary complaint detection reaching up to 88.2 macro F1. Finally, we present a qualitative analysis of the behavior of our models in predicting complaint severity levels.

pdf
Active Learning by Acquiring Contrastive Examples
Katerina Margatina | Giorgos Vernikos | Loïc Barrault | Nikolaos Aletras
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Common acquisition functions for active learning use either uncertainty or diversity sampling, aiming to select difficult and diverse data points from the pool of unlabeled data, respectively. In this work, leveraging the best of both worlds, we propose an acquisition function that opts for selecting contrastive examples, i.e. data points that are similar in the model feature space and yet the model outputs maximally different predictive likelihoods. We compare our approach, CAL (Contrastive Active Learning), with a diverse set of acquisition functions in four natural language understanding tasks and seven datasets. Our experiments show that CAL performs consistently better or equal than the best performing baseline across all tasks, on both in-domain and out-of-domain data. We also conduct an extensive ablation study of our method and we further analyze all actively acquired datasets showing that CAL achieves a better trade-off between uncertainty and diversity compared to other strategies.

pdf
Frustratingly Simple Pretraining Alternatives to Masked Language Modeling
Atsuki Yamaguchi | George Chrysostomou | Katerina Margatina | Nikolaos Aletras
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Masked language modeling (MLM), a self-supervised pretraining objective, is widely used in natural language processing for learning text representations. MLM trains a model to predict a random sample of input tokens that have been replaced by a [MASK] placeholder in a multi-class setting over the entire vocabulary. When pretraining, it is common to use alongside MLM other auxiliary objectives on the token or sequence level to improve downstream performance (e.g. next sentence prediction). However, no previous work so far has attempted in examining whether other simpler linguistically intuitive or not objectives can be used standalone as main pretraining objectives. In this paper, we explore five simple pretraining objectives based on token-level classification tasks as replacements of MLM. Empirical results on GLUE and SQUAD show that our proposed methods achieve comparable or better performance to MLM using a BERT-BASE architecture. We further validate our methods using smaller models, showing that pretraining a model with 41% of the BERT-BASE’s parameters, BERT-MEDIUM results in only a 1% drop in GLUE scores with our best objective.

pdf
Point-of-Interest Type Prediction using Text and Images
Danae Sánchez Villegas | Nikolaos Aletras
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Point-of-interest (POI) type prediction is the task of inferring the type of a place from where a social media post was shared. Inferring a POI’s type is useful for studies in computational social science including sociolinguistics, geosemiotics, and cultural geography, and has applications in geosocial networking technologies such as recommendation and visualization systems. Prior efforts in POI type prediction focus solely on text, without taking visual information into account. However in reality, the variety of modalities, as well as their semiotic relationships with one another, shape communication and interactions in social media. This paper presents a study on POI type prediction using multimodal information from text and images available at posting time. For that purpose, we enrich a currently available data set for POI type prediction with the images that accompany the text messages. Our proposed method extracts relevant information from each modality to effectively capture interactions between text and image achieving a macro F1 of 47.21 across 8 categories significantly outperforming the state-of-the-art method for POI type prediction based on text-only methods. Finally, we provide a detailed analysis to shed light on cross-modal interactions and the limitations of our best performing model.

pdf
Enjoy the Salience: Towards Better Transformer-based Faithful Explanations with Word Salience
George Chrysostomou | Nikolaos Aletras
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Pretrained transformer-based models such as BERT have demonstrated state-of-the-art predictive performance when adapted into a range of natural language processing tasks. An open problem is how to improve the faithfulness of explanations (rationales) for the predictions of these models. In this paper, we hypothesize that salient information extracted a priori from the training data can complement the task-specific information learned by the model during fine-tuning on a downstream task. In this way, we aim to help BERT not to forget assigning importance to informative input tokens when making predictions by proposing SaLoss; an auxiliary loss function for guiding the multi-head attention mechanism during training to be close to salient information extracted a priori using TextRank. Experiments for explanation faithfulness across five datasets, show that models trained with SaLoss consistently provide more faithful explanations across four different feature attribution methods compared to vanilla BERT. Using the rationales extracted from vanilla BERT and SaLoss models to train inherently faithful classifiers, we further show that the latter result in higher predictive performance in downstream tasks.

pdf
An Empirical Study on Leveraging Position Embeddings for Target-oriented Opinion Words Extraction
Samuel Mensah | Kai Sun | Nikolaos Aletras
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Target-oriented opinion words extraction (TOWE) (Fan et al., 2019b) is a new subtask of target-oriented sentiment analysis that aims to extract opinion words for a given aspect in text. Current state-of-the-art methods leverage position embeddings to capture the relative position of a word to the target. However, the performance of these methods depends on the ability to incorporate this information into word representations. In this paper, we explore a variety of text encoders based on pretrained word embeddings or language models that leverage part-of-speech and position embeddings, aiming to examine the actual contribution of each component in TOWE. We also adapt a graph convolutional network (GCN) to enhance word representations by incorporating syntactic information. Our experimental results demonstrate that BiLSTM-based models can effectively encode position information into word representations while using a GCN only achieves marginal gains. Interestingly, our simple methods outperform several state-of-the-art complex neural structures.

2020

pdf
Quality In, Quality Out: Learning from Actual Mistakes
Frederic Blain | Nikolaos Aletras | Lucia Specia
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

Approaches to Quality Estimation (QE) of machine translation have shown promising results at predicting quality scores for translated sentences. However, QE models are often trained on noisy approximations of quality annotations derived from the proportion of post-edited words in translated sentences instead of direct human annotations of translation errors. The latter is a more reliable ground-truth but more expensive to obtain. In this paper, we present the first attempt to model the task of predicting the proportion of actual translation errors in a sentence while minimising the need for direct human annotation. For that purpose, we use transfer-learning to leverage large scale noisy annotations and small sets of high-fidelity human annotated translation errors to train QE models. Experiments on four language pairs and translations obtained by statistical and neural models show consistent gains over strong baselines.

pdf
Analyzing Political Parody in Social Media
Antonis Maronikolakis | Danae Sánchez Villegas | Daniel Preotiuc-Pietro | Nikolaos Aletras
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Parody is a figurative device used to imitate an entity for comedic or critical purposes and represents a widespread phenomenon in social media through many popular parody accounts. In this paper, we present the first computational study of parody. We introduce a new publicly available data set of tweets from real politicians and their corresponding parody accounts. We run a battery of supervised machine learning models for automatically detecting parody tweets with an emphasis on robustness by testing on tweets from accounts unseen in training, across different genders and across countries. Our results show that political parody tweets can be predicted with an accuracy up to 90%. Finally, we identify the markers of parody through a linguistic analysis. Beyond research in linguistics and political communication, accurately and automatically detecting parody is important to improving fact checking for journalists and analytics such as sentiment analysis through filtering out parodical utterances.

pdf
An Empirical Study on Large-Scale Multi-Label Text Classification Including Few and Zero-Shot Labels
Ilias Chalkidis | Manos Fergadiotis | Sotiris Kotitsas | Prodromos Malakasiotis | Nikolaos Aletras | Ion Androutsopoulos
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Large-scale Multi-label Text Classification (LMTC) has a wide range of Natural Language Processing (NLP) applications and presents interesting challenges. First, not all labels are well represented in the training set, due to the very large label set and the skewed label distributions of datasets. Also, label hierarchies and differences in human labelling guidelines may affect graph-aware annotation proximity. Finally, the label hierarchies are periodically updated, requiring LMTC models capable of zero-shot generalization. Current state-of-the-art LMTC models employ Label-Wise Attention Networks (LWANs), which (1) typically treat LMTC as flat multi-label classification; (2) may use the label hierarchy to improve zero-shot learning, although this practice is vastly understudied; and (3) have not been combined with pre-trained Transformers (e.g. BERT), which have led to state-of-the-art results in several NLP benchmarks. Here, for the first time, we empirically evaluate a battery of LMTC methods from vanilla LWANs to hierarchical classification approaches and transfer learning, on frequent, few, and zero-shot learning on three datasets from different domains. We show that hierarchical methods based on Probabilistic Label Trees (PLTs) outperform LWANs. Furthermore, we show that Transformer-based approaches outperform the state-of-the-art in two of the datasets, and we propose a new state-of-the-art method which combines BERT with LWAN. Finally, we propose new models that leverage the label hierarchy to improve few and zero-shot learning, considering on each dataset a graph-aware annotation proximity measure that we introduce.

pdf
Complaint Identification in Social Media with Transformer Networks
Mali Jin | Nikolaos Aletras
Proceedings of the 28th International Conference on Computational Linguistics

Complaining is a speech act extensively used by humans to communicate a negative inconsistency between reality and expectations. Previous work on automatically identifying complaints in social media has focused on using feature-based and task-specific neural network models. Adapting state-of-the-art pre-trained neural language models and their combinations with other linguistic information from topics or sentiment for complaint prediction has yet to be explored. In this paper, we evaluate a battery of neural models underpinned by transformer networks which we subsequently combine with linguistic information. Experiments on a publicly available data set of complaints demonstrate that our models outperform previous state-of-the-art methods by a large margin achieving a macro F1 up to 87.

pdf
LEGAL-BERT: The Muppets straight out of Law School
Ilias Chalkidis | Manos Fergadiotis | Prodromos Malakasiotis | Nikolaos Aletras | Ion Androutsopoulos
Findings of the Association for Computational Linguistics: EMNLP 2020

BERT has achieved impressive performance in several NLP tasks. However, there has been limited investigation on its adaptation guidelines in specialised domains. Here we focus on the legal domain, where we explore several approaches for applying BERT models to downstream legal tasks, evaluating on multiple datasets. Our findings indicate that the previous guidelines for pre-training and fine-tuning, often blindly followed, do not always generalize well in the legal domain. Thus we propose a systematic investigation of the available strategies when applying BERT in specialised domains. These are: (a) use the original BERT out of the box, (b) adapt BERT by additional pre-training on domain-specific corpora, and (c) pre-train BERT from scratch on domain-specific corpora. We also propose a broader hyper-parameter search space when fine-tuning for downstream tasks and we release LEGAL-BERT, a family of BERT models intended to assist legal NLP research, computational law, and legal technology applications.

pdf
Unsupervised Quality Estimation for Neural Machine Translation
Marina Fomicheva | Shuo Sun | Lisa Yankovskaya | Frédéric Blain | Francisco Guzmán | Mark Fishel | Nikolaos Aletras | Vishrav Chaudhary | Lucia Specia
Transactions of the Association for Computational Linguistics, Volume 8

Quality Estimation (QE) is an important component in making Machine Translation (MT) useful in real-world applications, as it is aimed to inform the user on the quality of the MT output at test time. Existing approaches require large amounts of expert annotated data, computation, and time for training. As an alternative, we devise an unsupervised approach to QE where no training or access to additional resources besides the MT system itself is required. Different from most of the current work that treats the MT system as a black box, we explore useful information that can be extracted from the MT system as a by-product of translation. By utilizing methods for uncertainty quantification, we achieve very good correlation with human judgments of quality, rivaling state-of-the-art supervised QE models. To evaluate our approach we collect the first dataset that enables work on both black-box and glass-box approaches to QE.

pdf
Point-of-Interest Type Inference from Social Media Text
Danae Sánchez Villegas | Daniel Preotiuc-Pietro | Nikolaos Aletras
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Physical places help shape how we perceive the experiences we have there. We study the relationship between social media text and the type of the place from where it was posted, whether a park, restaurant, or someplace else. To facilitate this, we introduce a novel data set of ~200,000 English tweets published from 2,761 different points-of-interest in the U.S., enriched with place type information. We train classifiers to predict the type of the location a tweet was sent from that reach a macro F1 of 43.67 across eight classes and uncover the linguistic markers associated with each type of place. The ability to predict semantic place information from a tweet has applications in recommendation systems, personalization services and cultural geography.

2019

pdf
Re-Ranking Words to Improve Interpretability of Automatically Generated Topics
Areej Alokaili | Nikolaos Aletras | Mark Stevenson
Proceedings of the 13th International Conference on Computational Semantics - Long Papers

Topics models, such as LDA, are widely used in Natural Language Processing. Making their output interpretable is an important area of research with applications to areas such as the enhancement of exploratory search interfaces and the development of interpretable machine learning models. Conventionally, topics are represented by their n most probable words, however, these representations are often difficult for humans to interpret. This paper explores the re-ranking of topic words to generate more interpretable topic representations. A range of approaches are compared and evaluated in two experiments. The first uses crowdworkers to associate topics represented by different word rankings with related documents. The second experiment is an automatic approach based on a document retrieval task applied on multiple domains. Results in both experiments demonstrate that re-ranking words improves topic interpretability and that the most effective re-ranking schemes were those which combine information about the importance of words both within topics and their relative frequency in the entire corpus. In addition, close correlation between the results of the two evaluation approaches suggests that the automatic method proposed here could be used to evaluate re-ranking methods without the need for human judgements.

pdf bib
Proceedings of the Natural Legal Language Processing Workshop 2019
Nikolaos Aletras | Elliott Ash | Leslie Barrett | Daniel Chen | Adam Meyers | Daniel Preotiuc-Pietro | David Rosenberg | Amanda Stent
Proceedings of the Natural Legal Language Processing Workshop 2019

pdf
Extreme Multi-Label Legal Text Classification: A Case Study in EU Legislation
Ilias Chalkidis | Emmanouil Fergadiotis | Prodromos Malakasiotis | Nikolaos Aletras | Ion Androutsopoulos
Proceedings of the Natural Legal Language Processing Workshop 2019

We consider the task of Extreme Multi-Label Text Classification (XMTC) in the legal domain. We release a new dataset of 57k legislative documents from EURLEX, the European Union’s public document database, annotated with concepts from EUROVOC, a multidisciplinary thesaurus. The dataset is substantially larger than previous EURLEX datasets and suitable for XMTC, few-shot and zero-shot learning. Experimenting with several neural classifiers, we show that BIGRUs with self-attention outperform the current multi-label state-of-the-art methods, which employ label-wise attention. Replacing CNNs with BIGRUs in label-wise attention networks leads to the best overall performance.

pdf
Journalist-in-the-Loop: Continuous Learning as a Service for Rumour Analysis
Twin Karmakharm | Nikolaos Aletras | Kalina Bontcheva
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

Automatically identifying rumours in social media and assessing their veracity is an important task with downstream applications in journalism. A significant challenge is how to keep rumour analysis tools up-to-date as new information becomes available for particular rumours that spread in a social network. This paper presents a novel open-source web-based rumour analysis tool that can continuous learn from journalists. The system features a rumour annotation service that allows journalists to easily provide feedback for a given social media post through a web-based interface. The feedback allows the system to improve an underlying state-of-the-art neural network-based rumour classification model. The system can be easily integrated as a service into existing tools and platforms used by journalists using a REST API.

pdf
Neural Legal Judgment Prediction in English
Ilias Chalkidis | Ion Androutsopoulos | Nikolaos Aletras
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Legal judgment prediction is the task of automatically predicting the outcome of a court case, given a text describing the case’s facts. Previous work on using neural models for this task has focused on Chinese; only feature-based models (e.g., using bags of words and topics) have been considered in English. We release a new English legal judgment prediction dataset, containing cases from the European Court of Human Rights. We evaluate a broad variety of neural models on the new dataset, establishing strong baselines that surpass previous feature-based models in three tasks: (1) binary violation classification; (2) multi-label classification; (3) case importance prediction. We also explore if models are biased towards demographic information via data anonymization. As a side-product, we propose a hierarchical version of BERT, which bypasses BERT’s length limitation.

pdf
Automatically Identifying Complaints in Social Media
Daniel Preoţiuc-Pietro | Mihaela Gaman | Nikolaos Aletras
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Complaining is a basic speech act regularly used in human and computer mediated communication to express a negative mismatch between reality and expectations in a particular situation. Automatically identifying complaints in social media is of utmost importance for organizations or brands to improve the customer experience or in developing dialogue systems for handling and responding to complaints. In this paper, we introduce the first systematic analysis of complaints in computational linguistics. We collect a new annotated data set of written complaints expressed on Twitter. We present an extensive linguistic analysis of complaining as a speech act in social media and train strong feature-based and neural models of complaints across nine domains achieving a predictive performance of up to 79 F1 using distant supervision.

2017

pdf
Multimodal Topic Labelling
Ionut Sorodoc | Jey Han Lau | Nikolaos Aletras | Timothy Baldwin
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

Topics generated by topic models are typically presented as a list of topic terms. Automatic topic labelling is the task of generating a succinct label that summarises the theme or subject of a topic, with the intention of reducing the cognitive load of end-users when interpreting these topics. Traditionally, topic label systems focus on a single label modality, e.g. textual labels. In this work we propose a multimodal approach to topic labelling using a simple feedforward neural network. Given a topic and a candidate image or textual label, our method automatically generates a rating for the label, relative to the topic. Experiments show that this multimodal approach outperforms single-modality topic labelling systems.

2015

pdf
An analysis of the user occupational class through Twitter content
Daniel Preoţiuc-Pietro | Vasileios Lampos | Nikolaos Aletras
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

pdf
A Hybrid Distributional and Knowledge-based Model of Lexical Semantics
Nikolaos Aletras | Mark Stevenson
Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics

2014

pdf
Labelling Topics using Unsupervised Graph-based Methods
Nikolaos Aletras | Mark Stevenson
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf
Predicting and Characterising User Impact on Twitter
Vasileios Lampos | Nikolaos Aletras | Daniel Preoţiuc-Pietro | Trevor Cohn
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics

pdf
Measuring the Similarity between Automatically Generated Topics
Nikolaos Aletras | Mark Stevenson
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, volume 2: Short Papers

2013

pdf
Representing Topics Using Images
Nikolaos Aletras | Mark Stevenson
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Evaluating Topic Coherence Using Distributional Semantics
Nikolaos Aletras | Mark Stevenson
Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013) – Long Papers

pdf
UBC_UOS-TYPED: Regression for typed-similarity
Eneko Agirre | Nikolaos Aletras | Aitor Gonzalez-Agirre | German Rigau | Mark Stevenson
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity

pdf
PATHS: A System for Accessing Cultural Heritage Collections
Eneko Agirre | Nikolaos Aletras | Paul Clough | Samuel Fernando | Paula Goodale | Mark Hall | Aitor Soroa | Mark Stevenson
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations

2012

pdf
Computing Similarity between Cultural Heritage Items using Multimodal Features
Nikolaos Aletras | Mark Stevenson
Proceedings of the 6th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities

Search
Co-authors