The robustness of a model for real-world deployment is decided by how well it performs on unseen data and distinguishes between in-domain and out-of-domain samples. Visual document classifiers have shown impressive performance on in-distribution test sets. However, they tend to have a hard time correctly classifying and differentiating out-of-distribution examples. Image-based classifiers lack the text component, whereas multi-modality transformer-based models face the token serialization problem in visual documents due to their diverse layouts. They also require a lot of computing power during inference, making them impractical for many real-world applications. We propose, GVdoc, a graph-based document classification model that addresses both of these challenges. Our approach generates a document graph based on its layout, and then trains a graph neural network to learn node and graph embeddings. Through experiments, we show that our model, even with fewer parameters, outperforms state-of-the-art models on out-of-distribution data while retaining comparable performance on the in-distribution test set.
Knowledge graph embedding (KGE) has been well-studied in general domains, but has not been examined for food computing. To fill this gap, we perform knowledge representation learning over a food knowledge graph (KG). We employ a pre-trained language model to encode entities and relations, thus emphasizing contextual information in food KGs. The model is trained on two tasks – predicting a masked entity from a given triple from the KG and predicting the plausibility of a triple. Analysis of food substitutions helps in dietary choices for enabling healthier eating behaviors. Previous work in food substitutions mainly focuses on semantic similarity while ignoring the context. It is also hard to evaluate the substitutions due to the lack of an adequate validation set, and further, the evaluation is subjective based on perceived purpose. To tackle this problem, we propose a collection of adversarial sample generation strategies for different food substitutions over our learnt KGE. We propose multiple strategies to generate high quality context-aware recipe and ingredient substitutions and also provide generalized ingredient substitutions to meet different user needs. The effectiveness and efficiency of the proposed knowledge graph learning method and the following attack strategies are verified by extensive evaluations on a large-scale food KG.
Learning word embeddings is an essential topic in natural language processing. Most existing works use a vast corpus as a primary source while training, but this requires massive time and space for data pre-processing and model training. We propose a new model, HG2Vec, that learns word embeddings utilizing only dictionaries and thesauri. Our model reaches the state-of-art on multiple word similarity and relatedness benchmarks. We demonstrate that dictionaries and thesauri are effective resources to learn word embeddings. In addition, we exploit a new context-focused loss that models transitive relationships between word pairs and balances the performance between similarity and relatedness benchmarks, yielding superior results.
When answering natural language questions over knowledge bases (KBs), different question components and KB aspects play different roles. However, most existing embedding-based methods for knowledge base question answering (KBQA) ignore the subtle inter-relationships between the question and the KB (e.g., entity types, relation paths and context). In this work, we propose to directly model the two-way flow of interactions between the questions and the KB via a novel Bidirectional Attentive Memory Network, called BAMnet. Requiring no external resources and only very few hand-crafted features, on the WebQuestions benchmark, our method significantly outperforms existing information-retrieval based methods, and remains competitive with (hand-crafted) semantic parsing based methods. Also, since we use attention mechanisms, our method offers better interpretability compared to other baselines.