Mohammad Mamun Or Rashid


2024

pdf
Unicode Normalization and Grapheme Parsing of Indic Languages
Nazmuddoha Ansary | Quazi Adibur Rahman Adib | Tahsin Reasat | Asif Shahriyar Sushmit | Ahmed Imtiaz Humayun | Sazia Mehnaz | Kanij Fatema | Mohammad Mamun Or Rashid | Farig Sadeque
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Writing systems of Indic languages have orthographic syllables, also known as complex graphemes, as unique horizontal units. A prominent feature of these languages is these complex grapheme units that comprise consonants/consonant conjuncts, vowel diacritics, and consonant diacritics, which, together make a unique Language. Unicode-based writing schemes of these languages often disregard this feature of these languages and encode words as linear sequences of Unicode characters using an intricate scheme of connector characters and font interpreters. Due to this way of using a few dozen Unicode glyphs to write thousands of different unique glyphs (complex graphemes), there are serious ambiguities that lead to malformed words. In this paper, we are proposing two libraries: i) a normalizer for normalizing inconsistencies caused by a Unicode-based encoding scheme for Indic languages and ii) a grapheme parser for Abugida text. It deconstructs words into visually distinct orthographic syllables or complex graphemes and their constituents. Our proposed normalizer is a more efficient and effective tool than the previously used IndicNLP normalizer. Moreover, our parser and normalizer are also suitable tools for general Abugida text processing as they performed well in our robust word-based and NLP experiments. We report the pipeline for the scripts of 7 languages in this work and develop the framework for the integration of more scripts.

2023

pdf
BanLemma: A Word Formation Dependent Rule and Dictionary Based Bangla Lemmatizer
Sadia Afrin | Md. Shahad Mahmud Chowdhury | Md. Islam | Faisal Khan | Labib Chowdhury | Md. Mahtab | Nazifa Chowdhury | Massud Forkan | Neelima Kundu | Hakim Arif | Mohammad Mamun Or Rashid | Mohammad Amin | Nabeel Mohammed
Findings of the Association for Computational Linguistics: EMNLP 2023

Lemmatization holds significance in both natural language processing (NLP) and linguistics, as it effectively decreases data density and aids in comprehending contextual meaning. However, due to the highly inflected nature and morphological richness, lemmatization in Bangla text poses a complex challenge. In this study, we propose linguistic rules for lemmatization and utilize a dictionary along with the rules to design a lemmatizer specifically for Bangla. Our system aims to lemmatize words based on their parts of speech class within a given sentence. Unlike previous rule-based approaches, we analyzed the suffix marker occurrence according to the morpho-syntactic values and then utilized sequences of suffix markers instead of entire suffixes. To develop our rules, we analyze a large corpus of Bangla text from various domains, sources, and time periods to observe the word formation of inflected words. The lemmatizer achieves an accuracy of 96.36% when tested against a manually annotated test dataset by trained linguists and demonstrates competitive performance on three previously published Bangla lemmatization datasets. We are making the code and datasets publicly available at https://github.com/eblict-gigatech/BanLemma in order to contribute to the further advancement of Bangla NLP.