This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The deployment and application of Large Language Models (LLMs) is hindered by their memory inefficiency, computational demands, and the high costs of API inferences. Traditional distillation methods, which transfer the capabilities of LLMs to smaller models, often fail to determine whether the knowledge has been sufficiently transferred, potentially resulting in high costs or incomplete distillation. In this paper, we propose an Explanation-Guided LLMs Active Distillation (ELAD) framework that employs an active learning strategy to optimize the balance between annotation costs and model performance. To improve the efficiency of sample selection, we introduce an explanation-guided sample selection method that identifies samples challenging its reasoning by exploiting uncertainties in reasoning explanation steps. Additionally, we present a customized LLM-annotated explanation revision technique where the teacher model detects and corrects flaws in the student model’s reasoning. Our experiments across various reasoning datasets demonstrate that our framework significantly enhances the efficiency of LLMs knowledge distillation.
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs) and revolutionized various fields by providing a few task-relevant demonstrations in the prompt. However, trustworthy issues with LLM’s response, such as hallucination, have also been actively discussed. Existing works have been devoted to quantifying the uncertainty in LLM’s response, but they often overlook the complex nature of LLMs and the uniqueness of in-context learning. In this work, we delve into the predictive uncertainty of LLMs associated with in-context learning, highlighting that such uncertainties may stem from both the provided demonstrations (aleatoric uncertainty) and ambiguities tied to the model’s configurations (epistemic uncertainty). We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties. The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion. Extensive experiments are conducted to demonstrate the effectiveness of the decomposition. The code and data are available at: https://github.com/lingchen0331/UQ_ICL.
Though advanced in understanding visual information with human languages, Large Vision-Language Models (LVLMs) still suffer from multimodal hallucinations. A natural concern is that during multimodal interaction, the generated hallucinations could influence the LVLMs’ subsequent generation. Thus, we raise a question: When presented with a query relevant to the previously generated hallucination, will LVLMs be misled and respond incorrectly, even though the ground visual information exists? To answer this, we propose a framework called \\textitMMHalSnowball to evaluate LVLMs’ behaviors when encountering generated hallucinations, where LVLMs are required to answer specific visual questions within a curated hallucinatory conversation. Crucially, our experiment shows that the performance of open-source LVLMs drops by at least 31\\%, indicating that LVLMs are prone to accept the generated hallucinations and make false claims that they would not have supported without distractions. We term this Multimodal Hallucination Snowballing. To mitigate this issue, we further propose a training-free method called Residual Visual Decoding, where we revise the output distribution of LVLMs with the one derived from the residual visual input, providing models with direct access to the visual information. Experiments show that our method can mitigate more than 24\\% of the snowballed multimodal hallucination while maintaining capabilities.
Open-ended Commonsense Reasoning is defined as solving a commonsense question without providing 1) a short list of answer candidates and 2) a pre-defined answer scope. Conventional ways of formulating the commonsense question into a question-answering form or utilizing external knowledge to learn retrieval-based methods are less applicable in the open-ended setting due to an inherent challenge. Without pre-defining an answer scope or a few candidates, open-ended commonsense reasoning entails predicting answers by searching over an extremely large searching space. Moreover, most questions require implicit multi-hop reasoning, which presents even more challenges to our problem. In this work, we leverage pre-trained language models to iteratively retrieve reasoning paths on the external knowledge base, which does not require task-specific supervision. The reasoning paths can help to identify the most precise answer to the commonsense question. We conduct experiments on two commonsense benchmark datasets. Compared to other approaches, our proposed method achieves better performance both quantitatively and qualitatively.
Event extraction (EE) is an essential task of information extraction, which aims to extract structured event information from unstructured text. Most prior work focuses on extracting flat events while neglecting overlapped or nested ones. A few models for overlapped and nested EE includes several successive stages to extract event triggers and arguments,which suffer from error propagation. Therefore, we design a simple yet effective tagging scheme and model to formulate EE as word-word relation recognition, called OneEE. The relations between trigger or argument words are simultaneously recognized in one stage with parallel grid tagging, thus yielding a very fast event extraction speed. The model is equipped with an adaptive event fusion module to generate event-aware representations and a distance-aware predictor to integrate relative distance information for word-word relation recognition, which are empirically demonstrated to be effective mechanisms. Experiments on 3 overlapped and nested EE benchmarks, namely FewFC, Genia11, and Genia13, show that OneEE achieves the state-of-the-art (SOTA) results. Moreover, the inference speed of OneEE is faster than those of baselines in the same condition, and can be further substantially improved since it supports parallel inference.
In the present paper, we introduce the ManDi Corpus, a spoken corpus of regional Mandarin dialects and Standard Mandarin. The corpus currently contains 357 recordings (about 9.6 hours) of monosyllabic words, disyllabic words, short sentences, a short passage and a poem, each produced in Standard Mandarin and in one of six regional Mandarin dialects: Beijing, Chengdu, Jinan, Taiyuan, Wuhan, and Xi’an Mandarin from 36 speakers. The corpus was collected remotely using participant-controlled smartphone recording apps. Word- and phone-level alignments were generated using Praat and the Montreal Forced Aligner. The pilot study of dialect-specific tone systems showed that with practicable design and decent recording quality, remotely collected speech data can be suitable for analysis of relative patterns in acoustic-phonetic realization. The corpus is available on OSF (https://osf.io/fgv4w/) for non-commercial use under a CC BY-NC 3.0 license.
In this paper, we present an approach for sentiment analysis in code-mixed language on twitter defined in SemEval-2020 Task 9. Our team (referred as LiangZhao) employ different multilingual models with weighted loss focused on complexity of code-mixing in sentence, in which the best model achieved f1-score of 0.806 and ranked 1st of subtask- Sentimix Spanglish. The performance of method is analyzed and each component of our architecture is demonstrated.
Compositional generalization is a basic mechanism in human language learning, but current neural networks lack such ability. In this paper, we conduct fundamental research for encoding compositionality in neural networks. Conventional methods use a single representation for the input sentence, making it hard to apply prior knowledge of compositionality. In contrast, our approach leverages such knowledge with two representations, one generating attention maps, and the other mapping attended input words to output symbols. We reduce the entropy in each representation to improve generalization. Our experiments demonstrate significant improvements over the conventional methods in five NLP tasks including instruction learning and machine translation. In the SCAN domain, it boosts accuracies from 14.0% to 98.8% in Jump task, and from 92.0% to 99.7% in TurnLeft task. It also beats human performance on a few-shot learning task. We hope the proposed approach can help ease future research towards human-level compositional language learning.
Recent work has shown that current text classification models are fragile and sensitive to simple perturbations. In this work, we propose a novel adversarial training approach, LexicalAT, to improve the robustness of current classification models. The proposed approach consists of a generator and a classifier. The generator learns to generate examples to attack the classifier while the classifier learns to defend these attacks. Considering the diversity of attacks, the generator uses a large-scale lexical knowledge base, WordNet, to generate attacking examples by replacing some words in training examples with their synonyms (e.g., sad and unhappy), neighbor words (e.g., fox and wolf), or super-superior words (e.g., chair and armchair). Due to the discrete generation step in the generator, we use policy gradient, a reinforcement learning approach, to train the two modules. Experiments show LexicalAT outperforms strong baselines and reduces test errors on various neural networks, including CNN, RNN, and BERT.
To deploy a spoken language understanding (SLU) model to a new language, language transferring is desired to avoid the trouble of acquiring and labeling a new big SLU corpus. An SLU corpus is a monolingual corpus with domain/intent/slot labels. Translating the original SLU corpus into the target language is an attractive strategy. However, SLU corpora consist of plenty of semantic labels (slots), which general-purpose translators cannot handle well, not to mention additional culture differences. This paper focuses on the language transferring task given a small in-domain parallel SLU corpus. The in-domain parallel corpus can be used as the first adaptation on the general translator. But more importantly, we show how to use reinforcement learning (RL) to further adapt the adapted translator, where translated sentences with more proper slot tags receive higher rewards. Our reward is derived from the source input sentence exclusively, unlike reward via actor-critical methods or computing reward with a ground truth target sentence. Hence we can adapt the translator the second time, using the big monolingual SLU corpus from the source language. We evaluate our approach on Chinese to English language transferring for SLU systems. The experimental results show that the generated English SLU corpus via adaptation and reinforcement learning gives us over 97% in the slot F1 score and over 84% accuracy in domain classification. It demonstrates the effectiveness of the proposed language transferring method. Compared with naive translation, our proposed method improves domain classification accuracy by relatively 22%, and the slot filling F1 score by relatively more than 71%.