This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
While vertical thinking relies on logical and commonsense reasoning, lateral thinking requires systems to defy commonsense associations and overwrite them through unconventional thinking. Lateral thinking has been shown to be challenging for current models but has received little attention. A recent benchmark, BRAINTEASER, aims to evaluate current models’ lateral thinking ability in a zero-shot setting. In this paper, we split the original benchmark to also support fine-tuning setting and present SemEval Task 9, BRAINTEASER(S), the first task at this competition designed to test the system’s reasoning and lateral thinking ability. As a popular task, BRAINTEASER(S)’s two subtasks receive 483 team submissions from 182 participants during the competition. This paper provides a fine-grained system analysis of the competition results, together with a reflection on what this means for the ability of the systems to reason laterally.We hope that the BRAINTEASER(S) subtasks and findings in this paper can stimulate future work on lateral thinking and robust reasoning by computational models
The rapid advancement of large language models (LLMs) has led to a new era marked by the development of autonomous applications in real-world scenarios, which drives innovation in creating advanced web agents. Existing web agents typically only handle one input modality and are evaluated only in simplified web simulators or static web snapshots, greatly limiting their applicability in real-world scenarios. To bridge this gap, we introduce WebVoyager, an innovative Large Multimodal Model (LMM) powered web agent that can complete user instructions end-to-end by interacting with real-world websites. Moreover, we establish a new benchmark by compiling real-world tasks from 15 popular websites and introduce an automatic evaluation protocol leveraging multimodal understanding abilities of GPT-4V to evaluate open-ended web agents. We show that WebVoyager achieves a 59.1% task success rate on our benchmark, significantly surpassing the performance of both GPT-4 (All Tools) and the WebVoyager (text-only) setups, underscoring the exceptional capability of WebVoyager. The proposed automatic evaluation metric achieves 85.3% agreement with human judgment, indicating its effectiveness in providing reliable and accurate assessments of web agents.
The success of language models has inspired the NLP community to attend to tasks that require implicit and complex reasoning, relying on human-like commonsense mechanisms. While such vertical thinking tasks have been relatively popular, lateral thinking puzzles have received little attention. To bridge this gap, we devise BrainTeaser: a multiple-choice Question Answering task designed to test the model’s ability to exhibit lateral thinking and defy default commonsense associations. We design a three-step procedure for creating the first lateral thinking benchmark, consisting of data collection, distractor generation, and generation of adversarial examples, leading to 1,100 puzzles with high-quality annotations. To assess the consistency of lateral reasoning by models, we enrich BrainTeaser based on a semantic and contextual reconstruction of its questions. Our experiments with state-of-the-art instruction- and commonsense language models reveal a significant gap between human and model performance, which is further widened when consistency across adversarial formats is considered. We make all of our code and data available to stimulate work on developing and evaluating lateral thinking models.
The retrieval model is an indispensable component for real-world knowledge-intensive tasks, e.g., open-domain question answering (ODQA). As separate retrieval skills are annotated for different datasets, recent work focuses on customized methods, limiting the model transfer- ability and scalability. In this work, we propose a modular retriever where individual modules correspond to key skills that can be reused across datasets. Our approach supports flexible skill configurations based on the target domain to boost performance. To mitigate task interference, we design a novel modularization parameterization inspired by sparse Transformer. We demonstrate that our model can benefit from self-supervised pretraining on Wikipedia and fine-tuning using multiple ODQA datasets, both in a multi-task fashion. Our approach outperforms recent self-supervised retrievers in zero-shot evaluations and achieves state-of-the-art fine-tuned retrieval performance on NQ, HotpotQA and OTT-QA.
Procedural text understanding is a challenging language reasoning task that requires models to track entity states across the development of a narrative. We identify three core aspects required for modeling this task, namely the local and global view of the inputs, as well as the global view of outputs. Prior methods have considered a subset of these aspects, which leads to either low precision or low recall. In this paper, we propose a new model Coalescing Global and Local Information (CGLI), which builds entity- and timestep-aware input representations (local input) considering the whole context (global input), and we jointly model the entity states with a structured prediction objective (global output). Thus, CGLI simultaneously optimizes for both precision and recall. Moreover, we extend CGLI with additional output layers and integrate it into a story reasoning framework. Extensive experiments on a popular procedural text understanding dataset show that our model achieves state-of-the-art results, while experiments on a story reasoning benchmark show the positive impact of our model on downstream reasoning.
We propose a novel open-domain question answering (ODQA) framework for answering single/multi-hop questions across heterogeneous knowledge sources.The key novelty of our method is the introduction of the intermediary modules into the current retriever-reader pipeline.Unlike previous methods that solely rely on the retriever for gathering all evidence in isolation,our intermediary performs a chain of reasoning over the retrieved set.Specifically, our method links the retrieved evidence with its related global context into graphs and organizes them into a candidate list of evidence chains.Built upon pretrained language models, our system achieves competitive performance on two ODQA datasets, OTT-QA and NQ, against tables and passages from Wikipedia.In particular, our model substantially outperforms the previous state-of-the-art on OTT-QA with an exact match score of 47.3 (45% relative gain).
The retriever-reader framework is popular for open-domain question answering (ODQA) due to its ability to use explicit knowledge. Although prior work has sought to increase the knowledge coverage by incorporating structured knowledge beyond text, accessing heterogeneous knowledge sources through a unified interface remains an open question. While data-to-text generation has the potential to serve as a universal interface for data and text, its feasibility for downstream tasks remains largely unknown. In this work, we bridge this gap and use the data-to-text method as a means for encoding structured knowledge for open-domain question answering. Specifically, we propose a verbalizer-retriever-reader framework for ODQA over data and text where verbalized tables from Wikipedia and graphs from Wikidata are used as augmented knowledge sources. We show that our Unified Data and Text QA, UDT-QA, can effectively benefit from the expanded knowledge index, leading to large gains over text-only baselines. Notably, our approach sets the single-model state-of-the-art on Natural Questions. Furthermore, our analyses indicate that verbalized knowledge is preferred for answer reasoning for both adapted and hot-swap settings.
In this paper, we describe our systems for solving the two Doc2Dial shared task: knowledge identification and response generation. We proposed several pre-processing and post-processing methods, and we experimented with data augmentation by pre-training the models on other relevant datasets. Our best model for knowledge identification outperformed the baseline by 10.5+ f1-score on the test-dev split, and our best model for response generation outperformed the baseline by 11+ Sacrebleu score on the test-dev split.
Commonsense reasoning benchmarks have been largely solved by fine-tuning language models. The downside is that fine-tuning may cause models to overfit to task-specific data and thereby forget their knowledge gained during pre-training. Recent works only propose lightweight model updates as models may already possess useful knowledge from past experience, but a challenge remains in understanding what parts and to what extent models should be refined for a given task. In this paper, we investigate what models learn from commonsense reasoning datasets. We measure the impact of three different adaptation methods on the generalization and accuracy of models. Our experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers. We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
The field of question answering (QA) has seen rapid growth in new tasks and modeling approaches in recent years. Large scale datasets and focus on challenging linguistic phenomena have driven development in neural models, some of which have achieved parity with human performance in limited cases. However, an examination of state-of-the-art model output reveals that a gap remains in reasoning ability compared to a human, and performance tends to degrade when models are exposed to less-constrained tasks. We are interested in more clearly defining the strengths and limitations of leading models across diverse QA challenges, intending to help future researchers with identifying pathways to generalizable performance. We conduct extensive qualitative and quantitative analyses on the results of four models across four datasets and relate common errors to model capabilities. We also illustrate limitations in the datasets we examine and discuss a way forward for achieving generalizable models and datasets that broadly test QA capabilities.
Non-extractive commonsense QA remains a challenging AI task, as it requires systems to reason about, synthesize, and gather disparate pieces of information, in order to generate responses to queries. Recent approaches on such tasks show increased performance, only when models are either pre-trained with additional information or when domain-specific heuristics are used, without any special consideration regarding the knowledge resource type. In this paper, we perform a survey of recent commonsense QA methods and we provide a systematic analysis of popular knowledge resources and knowledge-integration methods, across benchmarks from multiple commonsense datasets. Our results and analysis show that attention-based injection seems to be a preferable choice for knowledge integration and that the degree of domain overlap, between knowledge bases and datasets, plays a crucial role in determining model success.
This paper presents a new corpus and a robust deep learning architecture for a task in reading comprehension, passage completion, on multiparty dialog. Given a dialog in text and a passage containing factual descriptions about the dialog where mentions of the characters are replaced by blanks, the task is to fill the blanks with the most appropriate character names that reflect the contexts in the dialog. Since there is no dataset that challenges the task of passage completion in this genre, we create a corpus by selecting transcripts from a TV show that comprise 1,681 dialogs, generating passages for each dialog through crowdsourcing, and annotating mentions of characters in both the dialog and the passages. Given this dataset, we build a deep neural model that integrates rich feature extraction from convolutional neural networks into sequence modeling in recurrent neural networks, optimized by utterance and dialog level attentions. Our model outperforms the previous state-of-the-art model on this task in a different genre using bidirectional LSTM, showing a 13.0+% improvement for longer dialogs. Our analysis shows the effectiveness of the attention mechanisms and suggests a direction to machine comprehension on multiparty dialog.