Jun Feng


2023

pdf
Focus-aware Response Generation in Inquiry Conversation
Yiquan Wu | Weiming Lu | Yating Zhang | Adam Jatowt | Jun Feng | Changlong Sun | Fei Wu | Kun Kuang
Findings of the Association for Computational Linguistics: ACL 2023

Inquiry conversation is a common form of conversation that aims to complete the investigation (e.g., court hearing, medical consultation and police interrogation) during which a series of focus shifts occurs. While many models have been proposed to generate a smooth response to a given conversation history, neglecting the focus can limit performance in inquiry conversation where the order of the focuses plays there a key role. In this paper, we investigate the problem of response generation in inquiry conversation by taking the focus into consideration. We propose a novel Focus-aware Response Generation (FRG) method by jointly optimizing a multi-level encoder and a set of focal decoders to generate several candidate responses that correspond to different focuses. Additionally, a focus ranking module is proposed to predict the next focus and rank the candidate responses. Experiments on two orthogonal inquiry conversation datasets (judicial, medical domain) demonstrate that our method generates results significantly better in automatic metrics and human evaluation compared to the state-of-the-art approaches.

2022

pdf
Towards Interactivity and Interpretability: A Rationale-based Legal Judgment Prediction Framework
Yiquan Wu | Yifei Liu | Weiming Lu | Yating Zhang | Jun Feng | Changlong Sun | Fei Wu | Kun Kuang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Legal judgment prediction (LJP) is a fundamental task in legal AI, which aims to assist the judge to hear the case and determine the judgment. The legal judgment usually consists of the law article, charge, and term of penalty. In the real trial scenario, the judge usually makes the decision step-by-step: first concludes the rationale according to the case’s facts and then determines the judgment. Recently, many models have been proposed and made tremendous progress in LJP, but most of them adopt an end-to-end manner that cannot be manually intervened by the judge for practical use. Moreover, existing models lack interpretability due to the neglect of rationale in the prediction process. Following the judge’s real trial logic, in this paper, we propose a novel Rationale-based Legal Judgment Prediction (RLJP) framework. In the RLJP framework, the LJP process is split into two steps. In the first phase, the model generates the rationales according to the fact description. Then it predicts the judgment based on the fact and the generated rationales. Extensive experiments on a real-world dataset show RLJP achieves the best results compared to the state-of-the-art models. Meanwhile, the proposed framework provides good interactivity and interpretability which enables practical use.

2016

pdf
GAKE: Graph Aware Knowledge Embedding
Jun Feng | Minlie Huang | Yang Yang | Xiaoyan Zhu
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Knowledge embedding, which projects triples in a given knowledge base to d-dimensional vectors, has attracted considerable research efforts recently. Most existing approaches treat the given knowledge base as a set of triplets, each of whose representation is then learned separately. However, as a fact, triples are connected and depend on each other. In this paper, we propose a graph aware knowledge embedding method (GAKE), which formulates knowledge base as a directed graph, and learns representations for any vertices or edges by leveraging the graph’s structural information. We introduce three types of graph context for embedding: neighbor context, path context, and edge context, each reflects properties of knowledge from different perspectives. We also design an attention mechanism to learn representative power of different vertices or edges. To validate our method, we conduct several experiments on two tasks. Experimental results suggest that our method outperforms several state-of-art knowledge embedding models.