This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large language models (LLMs) have advanced the development of various AI conversational agents, including role-playing agents that mimic diverse characters and human behaviors. While prior research has predominantly focused on enhancing the conversational capability, role-specific knowledge and style of these agents, there has been a noticeable gap in assessing their social intelligence. In this paper, we introduce SocialBench, the first benchmark designed to systematically evaluate the sociality of role-playing agents at both individual and group levels of social interactions. SocialBench is constructed from various sources and covers a wide range of 500 characters and over 6,000 question prompts and 30,800 multi-turn role-playing utterances. We conduct comprehensive evaluations on this benchmark using mainstream LLMs. We find that agents excelling in individual level does not imply their proficiency in group level. Experimental results on SocialBench confirm its significance as a testbed for assessing the social interaction of role-playing agents. The benchmark is publicly accessible at https://github.com/X-PLUG/RoleInteract.
For the grammatical error correction (GEC) task, there usually exist multiple correction ways for an erroneous input sentence, leading to multiple references. Observing the high proportion of multi-reference instances in Chinese GEC training data, we target a systematic study on how to better utilize multi-reference training data. We propose two new approaches and a simple two-stage training strategy. We compare them against previously proposed approaches, on two Chinese training datasets, i.e., Lang-8 for second language learner texts and FCGEC-Train for native speaker texts, and three test datasets. The experiments and analyses demonstrate the effectiveness of our proposed approaches and reveal interesting insights. Our code is available at https://github.com/ymliucs/MrGEC.
Despite intensive efforts devoted to tool learning, the problem of budget-constrained tool learning, which focuses on resolving user queries within a specific budget constraint, has been widely overlooked. This paper proposes a novel method for budget-constrained tool learning. Our approach involves creating a preferable plan under the budget constraint before utilizing the tools. This plan outlines the feasible tools and the maximum number of times they can be employed, offering a comprehensive overview of the tool learning process for large language models. This allows them to allocate the budget from a broader perspective. To devise the plan without incurring significant extra costs, we suggest initially estimating the usefulness of the candidate tools based on past experience. Subsequently, we employ dynamic programming to formulate the plan. Experimental results demonstrate that our method can be integrated with various tool learning methods, significantly enhancing their effectiveness under strict budget constraints.
While Large language models (LLMs) have demonstrated considerable capabilities across various natural language tasks, they often fall short of the performance achieved by domain-specific state-of-the-art models. One potential approach to enhance domain-specific capabilities of LLMs involves fine-tuning them using corresponding datasets. However, this method can be both resource and time-intensive, and not applicable to closed-source commercial LLMs. In this paper, we propose Preference Adaptation for Enhancing Domain-specific Abilities of LLMs (PANDA), a method designed to augment the domain-specific capabilities of LLMs by leveraging insights from the response preference of expert models without requiring fine-tuning. Our experimental results reveal that PANDA significantly enhances the domain-specific ability of LLMs on text classification and interactive decision tasks. Moreover, LLM with PANDA even outperforms the expert model that being learned on 4 tasks of ScienceWorld. This finding highlights the potential of exploring tuning-free approaches to achieve weak-to-strong generalization.
Language models trained on large-scale corpus often generate harmful responses that are harmful and contrary to human values. A prevalent approach for human alignment is reinforcement learning from human feedback (RLHF), utilizing algorithms such as proximal policy optimization (PPO). However, these methods are often characterized by complexity, instability, and substantial resource consumption. Considering that existing large language models (LLMs) like ChatGPT are already relatively well-aligned and cost-friendly, researchers propose to align the language model with human preferences from AI feedback. Nevertheless, the common practices, that unidirectionally distill the responses, are constrained by the inherent capability of LLMs. To address it, we introduce CycleAlign, a framework that distills alignment capabilities from the parameter-invisible LLMs (black-box) to the parameter-visible models (white-box) in an iterative manner. CycleAlign iteratively improves both the white-box and black-box models by integrating static and dynamic in-context learning and a belief alignment method.Empirical results illustrate that the model fine-tuned by CycleAlign remarkably exceeds existing methods, and achieves the state-of-the-art performance in alignment with human value.
This paper introduces and evaluates ChatNetZero, a large-language model (LLM) chatbot developed through Retrieval-Augmented Generation (RAG), which uses generative AI to produce answers grounded in verified, climate-domain specific information. We describe ChatNetZero’s design, particularly the innovation of anti-hallucination and reference modules designed to enhance the accuracy and credibility of generated responses. To evaluate ChatNetZero’s performance against other LLMs, including GPT-4, Gemini, Coral, and ChatClimate, we conduct two types of validation: comparing LLMs’ generated responses to original source documents to verify their factual accuracy, and employing an expert survey to evaluate the overall quality, accuracy and relevance of each response. We find that while ChatNetZero responses show higher factual accuracy when compared to original source data, experts surveyed prefer lengthier responses that provide more context. Our results highlight the importance of prioritizing information presentation in the design of domain-specific LLMs to ensure that scientific information is effectively communicated, especially as even expert audiences find it challenging to assess the credibility of AI-generated content.
Large Language Models (LLMs) exhibit remarkable In-Context Learning (ICL) ability, where the model learns tasks from prompts consisting of input-output examples. However, the pre-training objectives of LLMs often misalign with ICL objectives. They’re mainly pre-trained with methods like masked language modeling and next-sentence prediction. On the other hand, ICL leverages example pairs to guide the model in generating task-aware responses such as text classification and question-answering tasks. The basic pre-training task-related capabilities can sometimes overshadow or conflict with task-specific subtleties required in ICL. To address this, we propose an In-context learning Ability Decoupler (IAD). The model aims to separate the ICL ability from the general ability of LLMs in the meta-training phase, where the ICL-related parameters are separately tuned to adapt for ICL tasks. Concretely, we first identify the parameters that are suitable for ICL by transference-driven gradient importance. We then propose a new max-margin loss to emphasize the separation of the general and ICL abilities. The loss is defined as the difference between the output of ICL and the original LLM, aiming to prevent the overconfidence of the LLM. By meta-training these ICL-related parameters with max-margin loss, we enable the model to learn and adapt to new tasks with limited data effectively. Experimental results show that IAD’s capability yields state-of-the-art performance on benchmark datasets by utilizing only 30% of the model’s parameters. Ablation study and detailed analysis prove the separation of the two abilities.
In vision-language pre-training (VLP), masked image modeling (MIM) has recently been introduced for fine-grained cross-modal alignment. However, in most existing methods, the reconstruction targets for MIM lack high-level semantics, and text is not sufficiently involved in masked modeling. These two drawbacks limit the effect of MIM in facilitating cross-modal semantic alignment. In this work, we propose a semantics-enhanced cross-modal MIM framework (SemMIM) for vision-language representation learning. Specifically, to provide more semantically meaningful supervision for MIM, we propose a local semantics enhancing approach, which harvest high-level semantics from global image features via self-supervised agreement learning and transfer them to local patch encodings by sharing the encoding space. Moreover, to achieve deep involvement of text during the entire MIM process, we propose a text-guided masking strategy and devise an efficient way of injecting textual information in both masked modeling and reconstruction target acquisition. Experimental results validate that our method improves the effectiveness of the MIM task in facilitating cross-modal semantic alignment. Compared to previous VLP models with similar model size and data scale, our SemMIM model achieves state-of-the-art or competitive performance on multiple downstream vision-language tasks.
In video-text retrieval, most existing methods adopt the dual-encoder architecture for fast retrieval, which employs two individual encoders to extract global latent representations for videos and texts. However, they face challenges in capturing fine-grained semantic concepts. In this work, we propose the UNIFY framework, which learns lexicon representations to capture fine-grained semantics and combines the strengths of latent and lexicon representations for video-text retrieval. Specifically, we map videos and texts into a pre-defined lexicon space, where each dimension corresponds to a semantic concept. A two-stage semantics grounding approach is proposed to activate semantically relevant dimensions and suppress irrelevant dimensions. The learned lexicon representations can thus reflect fine-grained semantics of videos and texts. Furthermore, to leverage the complementarity between latent and lexicon representations, we propose a unified learning scheme to facilitate mutual learning via structure sharing and self-distillation. Experimental results show our UNIFY framework largely outperforms previous video-text retrieval methods, with 4.8% and 8.2% Recall@1 improvement on MSR-VTT and DiDeMo respectively.
With the bloom of Large Language Models (LLMs), Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks. However, they fall short to comprehend context involving multiple images. A primary reason for this shortcoming is that the visual features for each images are encoded individually by frozen encoders before feeding into the LLM backbone, lacking awareness of other images and the multimodal instructions. We term this issue as prior-LLM modality isolation and propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion prior to feeding the features into LLMs. This paradigm initially “browses” through the inputs for essential insights, and then revisits the inputs to “concentrate” on crucial details, guided by these insights, to achieve a more comprehensive understanding of the multimodal inputs. Additionally, we develop training strategies specifically to enhance the understanding of multi-image inputs. Our method markedly boosts the performance on 7 multi-image scenarios, contributing to increments on average accuracy by 2.13% and 7.60% against strong MLLMs baselines with 3B and 11B LLMs, respectively.
Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.
Large language models (LLMs) have recently demonstrated remarkable capabilities to comprehend human intentions, engage in reasoning, and design planning-like behavior. To further unleash the power of LLMs to accomplish complex tasks, there is a growing trend to build agent frameworks that equips LLMs, such as ChatGPT, with tool-use abilities to connect with massive external APIs. In this work, we introduce ModelScope-Agent, a general and customizable agent framework for real-world applications, based on open-source LLMs as controllers. It provides a user-friendly system library, with a customizable engine design to support model training on multiple open-source LLMs, while also enabling seamless integration with both model APIs and common APIs in a unified way. To equip the LLMs with tool-use abilities, a comprehensive framework has been proposed spanning tool-use data collection, tool retrieval, tool registration, memory control, customized model training, and evaluation for practical real-world applications. Finally, we showcase ModelScopeGPT, a real-world intelligent assistant of ModelScope Community based on the ModelScope-Agent framework, which is able to connect open-source LLMs with more than 1000 public AI models and localized community knowledge in ModelScope. The ModelScope-Agent online demo, library are now publicly available.
Existing knowledge-enhanced methods have achieved remarkable results in certain Q&A tasks via obtaining diverse knowledge from different knowledge bases. However, limited by the properties of retrieved knowledge, they still have trouble benefiting from both the knowledge relevance and distinguishment simultaneously. To address the challenge, we propose CPACE, a Concept-centric Prompt-bAsed Contrastive Explanation Generation model, which aims to convert obtained symbolic knowledge into the contrastive explanation for better distinguishing the differences among given candidates. Firstly, following previous works, we retrieve different types of symbolic knowledge with a concept-centric knowledge extraction module. After that, we generate corresponding contrastive explanation using acquired symbolic knowledge and prompt as guidance for better modeling the knowledge distinguishment and interpretability. Finally, we regard the generated contrastive explanation as external knowledge for downstream task enhancement. We conduct a series of experiments on three widely-used question-answering datasets: CSQA, QASC, and OBQA. Experimental results demonstrate that with the help of generated contrastive explanation, our CPACE model achieves new SOTA on CSQA (89.8% on the testing set, 0.9% higher than human performance), and gains impressive improvement on QASC and OBQA (4.2% and 3.5%, respectively).
Text is ubiquitous in our visual world, conveying crucial information, such as in documents, websites, and everyday photographs. In this work, we propose UReader, a first exploration of universal OCR-free visually-situated language understanding based on the Multimodal Large Language Model (MLLM). By leveraging the shallow text recognition ability of the MLLM, we only finetuned 1.2% parameters and the training cost is much lower than previous work following domain-specific pretraining and finetuning paradigms. Concretely, UReader is jointly finetuned on a wide range of Visually-situated Language Understanding tasks via a unified instruction format. To enhance the visual text and semantic understanding, we further apply two auxiliary tasks with the same format, namely text reading and key points generation tasks. We design a shape-adaptive cropping module before the encoder-decoder architecture of MLLM to leverage the frozen low-resolution vision encoder for processing high-resolution images. Without downstream finetuning, our single model achieves state-of-the-art ocr-free performance in 8 out of 10 visually-situated language understanding tasks, across 5 domains: documents, tables, charts, natural images, and webpage screenshots. Codes and instruction-tuning datasets will be released.
Large language models (LLMs) have showcased remarkable capabilities in complex reasoning through chain of thought (CoT) prompting. Recently, there has been a growing interest in transferring these reasoning abilities from LLMs to smaller models. However, achieving both the diversity and consistency in rationales presents a challenge. In this paper, we focus on enhancing these two aspects and propose Multi-CoT Consistent Knowledge Distillation (MCC-KD) to efficiently distill the reasoning capabilities. In MCC-KD, we generate multiple rationales for each question and enforce consistency among their predictions by minimizing the bidirectional KL-divergence between the answer distributions. We conduct comprehensive experiments to investigate the effectiveness of MCC-KD with different model architectures (LLaMA/FlanT5) and various model scales (3B/7B/11B/13B) on both mathematical reasoning and commonsense reasoning benchmarks. The empirical results demonstrate that MCC-KD achieves superior performance on in-distribution datasets and exhibits a strong generalization ability on out-of-distribution datasets.
The sequence-to-sequence (Seq2Seq) approach has recently been widely used in grammatical error correction (GEC) and shows promising performance. However, the Seq2Seq GEC approach still suffers from two issues. First, a Seq2Seq GEC model can only be trained on parallel data, which, in GEC task, is often noisy and limited in quantity. Second, the decoder of a Seq2Seq GEC model lacks an explicit awareness of the correctness of the token being generated. In this paper, we propose a unified decoding intervention framework that employs an external critic to assess the appropriateness of the token to be generated incrementally, and then dynamically influence the choice of the next token. We discover and investigate two types of critics: a pre-trained left-to-right language model critic and an incremental target-side grammatical error detector critic. Through extensive experiments on English and Chinese datasets, our framework consistently outperforms strong baselines and achieves results competitive with state-of-the-art methods.
In open-domain dialogue generation tasks, contexts and responses in most datasets are one-to-one mapped, violating an important many-to-many characteristic: a context leads to various responses, and a response answers multiple contexts. Without such patterns, models poorly generalize and prefer responding safely. Many attempts have been made in either multi-turn settings from a one-to-many perspective or in a many-to-many perspective but limited to single-turn settings. The major challenge to many-to-many augment multi-turn dialogues is that discretely replacing each turn with semantic similarity breaks fragile context coherence. In this paper, we propose DialoGue Path Sampling (DialoGPS) method in continuous semantic space, the first many-to-many augmentation method for multi-turn dialogues. Specifically, we map a dialogue to our extended Brownian Bridge, a special Gaussian process. We sample latent variables to form coherent dialogue paths in the continuous space. A dialogue path corresponds to a new multi-turn dialogue and is used as augmented training data. We show the effect of DialoGPS with both automatic and human evaluation.
Intent detection is at the core of task-oriented dialogue systems. Existing intent detection systems are typically trained with a large amount of data over a predefined set of intent classes. However, newly emerged intents in multiple domains are commonplace in the real world. And it is time-consuming and impractical for dialogue systems to re-collect enough annotated data and re-train the model. These limitations call for an intent detection system that could continually recognize new intents with very few labeled examples. In this work, we study the Continual Few-shot Intent Detection (CFID) problem and construct a benchmark consisting of nine tasks with multiple domains and imbalanced classes. To address the key challenges of (a) catastrophic forgetting during continuous learning and (b) negative knowledge transfer across tasks, we propose the Prefix-guided Lightweight Encoder (PLE) with three auxiliary strategies, namely Pseudo Samples Replay (PSR), Teacher Knowledge Transfer (TKT) and Dynamic Weighting Replay (DWR). Extensive experiments demonstrate the effectiveness and efficiency of our method in preventing catastrophic forgetting and encouraging positive knowledge transfer across tasks.
Although the Conditional Variational Auto-Encoder (CVAE) model can generate more diversified responses than the traditional Seq2Seq model, the responses often have low relevance with the input words or are illogical with the question. A causal analysis is carried out to study the reasons behind, and a methodology of searching for the mediators and mitigating the confounding bias in dialogues is provided. Specifically, we propose to predict the mediators to preserve relevant information and auto-regressively incorporate the mediators into generating process. Besides, a dynamic topic graph guided conditional variational auto-encoder (TGG-CVAE) model is utilized to complement the semantic space and reduce the confounding bias in responses. Extensive experiments demonstrate that the proposed model is able to generate both relevant and informative responses, and outperforms the state-of-the-art in terms of automatic metrics and human evaluations.
Text classification struggles to generalize to unseen classes with very few labeled text instances per class. In such a few-shot learning (FSL) setting, metric-based meta-learning approaches have shown promising results. Previous studies mainly aim to derive a prototype representation for each class. However, they neglect that it is challenging-yet-unnecessary to construct a compact representation which expresses the entire meaning for each class. They also ignore the importance to capture the inter-dependency between query and the support set for few-shot text classification. To deal with these issues, we propose a meta-learning based method MGIMN which performs instance-wise comparison followed by aggregation to generate class-wise matching vectors instead of prototype learning. The key of instance-wise comparison is the interactive matching within the class-specific context and episode-specific context. Extensive experiments demonstrate that the proposed method significantly outperforms the existing SOTA approaches, under both the standard FSL and generalized FSL settings.
Large-scale pre-trained foundation models have been an emerging paradigm for building artificial intelligence (AI) systems, which can be quickly adapted to a wide range of downstream tasks. This paper presents mPLUG, a new vision-language foundation model for both cross-modal understanding and generation. Most existing pre-trained models suffer from inefficiency and linguistic signal overwhelmed by long visual sequences in cross-modal alignment. To address both problems, mPLUG introduces an effective and efficient vision-language architecture with novel cross-modal skip-connections.mPLUG is pre-trained end-to-end on large-scale image-text pairs with both discriminative and generative objectives. It achieves state-of-the-art results on a wide range of vision-language downstream tasks, including image captioning, image-text retrieval, visual grounding and visual question answering. mPLUG also demonstrates strong zero-shot transferability on vision-language and video-language tasks. The code and pre-trained models are available at https://github.com/alibaba/AliceMind
User satisfaction estimation in the dialogue-based customer service is critical not only for helping developers find the system defects, but also making it possible to get timely human intervention for dissatisfied customers. In this paper, we investigate the problem of user satisfaction estimation in E-commerce customer service. In order to apply the estimator to online services for timely human intervention, we need to estimate the satisfaction score at each turn. However, in actual scenario we can only collect the satisfaction labels for the whole dialogue sessions via user feedback. To this end, we formalize the turn-level satisfaction estimation as a reinforcement learning problem, in which the model can be optimized with only session-level satisfaction labels. We conduct experiments on the dataset collected from a commercial customer service system, and compare our model with the supervised learning models. Extensive experiments show that the proposed method outperforms all the baseline models.
In order to better understand the reason behind model behaviors (i.e., making predictions), most recent works have exploited generative models to provide complementary explanations. However, existing approaches in NLP mainly focus on “WHY A” rather than contrastive “WHY A NOT B”, which is shown to be able to better distinguish confusing candidates and improve data efficiency in other research fields. In this paper, we focus on generating contrastive explanations with counterfactual examples in NLI and propose a novel Knowledge-Aware Contrastive Explanation generation framework (KACE).Specifically, we first identify rationales (i.e., key phrases) from input sentences, and use them as key perturbations for generating counterfactual examples. After obtaining qualified counterfactual examples, we take them along with original examples and external knowledge as input, and employ a knowledge-aware generative pre-trained language model to generate contrastive explanations. Experimental results show that contrastive explanations are beneficial to fit the scenarios by clarifying the difference between the predicted answer and other possible wrong ones. Moreover, we train an NLI model enhanced with contrastive explanations and achieves an accuracy of 91.9% on SNLI, gaining improvements of 5.7% against ETPA (“Explain-Then-Predict-Attention”) and 0.6% against NILE (“WHY A”).
Recent state-of-the-art (SOTA) effective neural network methods and fine-tuning methods based on pre-trained models (PTM) have been used in Chinese word segmentation (CWS), and they achieve great results. However, previous works focus on training the models with the fixed corpus at every iteration. The intermediate generated information is also valuable. Besides, the robustness of the previous neural methods is limited by the large-scale annotated data. There are a few noises in the annotated corpus. Limited efforts have been made by previous studies to deal with such problems. In this work, we propose a self-supervised CWS approach with a straightforward and effective architecture. First, we train a word segmentation model and use it to generate the segmentation results. Then, we use a revised masked language model (MLM) to evaluate the quality of the segmentation results based on the predictions of the MLM. Finally, we leverage the evaluations to aid the training of the segmenter by improved minimum risk training. Experimental results show that our approach outperforms previous methods on 9 different CWS datasets with single criterion training and multiple criteria training and achieves better robustness.
Visual storytelling aims to generate a narrative paragraph from a sequence of images automatically. Existing approaches construct text description independently for each image and roughly concatenate them as a story, which leads to the problem of generating semantically incoherent content. In this paper, we propose a new way for visual storytelling by introducing a topic description task to detect the global semantic context of an image stream. A story is then constructed with the guidance of the topic description. In order to combine the two generation tasks, we propose a multi-agent communication framework that regards the topic description generator and the story generator as two agents and learn them simultaneously via iterative updating mechanism. We validate our approach on VIST dataset, where quantitative results, ablations, and human evaluation demonstrate our method’s good ability in generating stories with higher quality compared to state-of-the-art methods.
Target-dependent sentiment analysis (TDSA) aims to classify the sentiment of a text towards a given target. The major challenge of this task lies in modeling the semantic relatedness between a target and its context sentence. This paper proposes a novel Target-Guided Structured Attention Network (TG-SAN), which captures target-related contexts for TDSA in a fine-to-coarse manner. Given a target and its context sentence, the proposed TG-SAN first identifies multiple semantic segments from the sentence using a target-guided structured attention mechanism. It then fuses the extracted segments based on their relatedness with the target for sentiment classification. We present comprehensive comparative experiments on three benchmarks with three major findings. First, TG-SAN outperforms the state-of-the-art by up to 1.61% and 3.58% in terms of accuracy and Marco-F1, respectively. Second, it shows a strong advantage in determining the sentiment of a target when the context sentence contains multiple semantic segments. Lastly, visualization results show that the attention scores produced by TG-SAN are highly interpretable
Existing approaches to neural machine translation are typically autoregressive models. While these models attain state-of-the-art translation quality, they are suffering from low parallelizability and thus slow at decoding long sequences. In this paper, we propose a novel model for fast sequence generation — the semi-autoregressive Transformer (SAT). The SAT keeps the autoregressive property in global but relieves in local and thus are able to produce multiple successive words in parallel at each time step. Experiments conducted on English-German and Chinese-English translation tasks show that the SAT achieves a good balance between translation quality and decoding speed. On WMT’14 English-German translation, the SAT achieves 5.58× speedup while maintaining 88% translation quality, significantly better than the previous non-autoregressive methods. When produces two words at each time step, the SAT is almost lossless (only 1% degeneration in BLEU score).