Hongkun Yu
2023
Large Language Models Can Self-Improve
Jiaxin Huang
|
Shixiang Gu
|
Le Hou
|
Yuexin Wu
|
Xuezhi Wang
|
Hongkun Yu
|
Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have achieved excellent performances in various tasks. However, fine-tuning an LLM requires extensive supervision. Human, on the other hand, may improve their reasoning abilities by self-thinking without external inputs. In this work, we demonstrate that an LLM is also capable of self-improving with only unlabeled datasets. We use a pre-trained LLM to generate “high-confidence” rationale-augmented answers for unlabeled questions using Chain-of-Though (CoT) prompting and self-consistency, and fine-tune the LLM using those self-generated solutions as target outputs. We show that without any ground truth label, our approach improves the general reasoning ability of a 540B-parameter LLM (74.4%→82.1% on GSM8K, 90.0%→94.4% on OpenBookQA, and 63.4%→67.9% on ANLI-A3) and can also be adapted to extreme low-resource cases where even training questions and CoT prompts are limited. We conduct ablation studies and show that fine-tuning on diverse reasoning paths is critical for self-improvement.
2021
On the Transformer Growth for Progressive BERT Training
Xiaotao Gu
|
Liyuan Liu
|
Hongkun Yu
|
Jing Li
|
Chen Chen
|
Jiawei Han
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
As the excessive pre-training cost arouses the need to improve efficiency, considerable efforts have been made to train BERT progressively–start from an inferior but low-cost model and gradually increase the computational complexity. Our objective is to help advance the understanding of such Transformer growth and discover principles that guide progressive training. First, we find that similar to network architecture selection, Transformer growth also favors compound scaling. Specifically, while existing methods only conduct network growth in a single dimension, we observe that it is beneficial to use compound growth operators and balance multiple dimensions (e.g., depth, width, and input length of the model). Moreover, we explore alternative growth operators in each dimension via controlled comparison to give practical guidance for operator selection. In light of our analyses, the proposed method CompoundGrow speeds up BERT pre-training by 73.6% and 82.2% for the base and large models respectively while achieving comparable performances.
2020
MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
Zhiqing Sun
|
Hongkun Yu
|
Xiaodan Song
|
Renjie Liu
|
Yiming Yang
|
Denny Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is 4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the natural language inference tasks of GLUE, MobileBERT achieves a GLUE score of 77.7 (0.6 lower than BERT_BASE), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of 90.0/79.2 (1.5/2.1 higher than BERT_BASE).
Search
Co-authors
- Jiawei Han 2
- Jiaxin Huang 1
- Shixiang Gu 1
- Le Hou 1
- Yuexin Wu 1
- show all...