Emmanuelle Kempf


2024

pdf
Leveraging Information Redundancy of Real-World Data through Distant Supervision
Ariel Cohen | Alexandrine Lanson | Emmanuelle Kempf | Xavier Tannier
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We explore the task of event extraction and classification by harnessing the power of distant supervision. We present a novel text labeling method that leverages the redundancy of temporal information in a data lake. This method enables the creation of a large programmatically annotated corpus, allowing the training of transformer models using distant supervision. This aims to reduce expert annotation time, a scarce and expensive resource. Our approach utilizes temporal redundancy between structured sources and text, enabling the design of a replicable framework applicable to diverse real-world databases and use cases. We employ this method to create multiple silver datasets to reconstruct key events in cancer patients’ pathways, using clinical notes from a cohort of 380,000 oncological patients. By employing various noise label management techniques, we validate our end-to-end approach and compare it with a baseline classifier built on expert-annotated data. The implications of our work extend to accelerating downstream applications, such as patient recruitment for clinical trials, treatment effectiveness studies, survival analysis, and epidemiology research. While our study showcases the potential of the method, there remain avenues for further exploration, including advanced noise management techniques, semi-supervised approaches, and a deeper understanding of biases in the generated datasets and models.

2021

pdf
Classification multilabel de concepts médicaux pour l’identification du profil clinique du patient (Multilabel classification of medical concepts for patient’s clinical profile identification )
Christel Gérardin | Pascal Vaillant | Perceval Wajsbürt | Clément Gilavert | Ali Bellamine | Emmanuelle Kempf | Xavier Tannier
Actes de la 28e Conférence sur le Traitement Automatique des Langues Naturelles. Atelier DÉfi Fouille de Textes (DEFT)

La première tâche du Défi fouille de textes 2021 a consisté à extraire automatiquement, à partir de cas cliniques, les phénotypes pathologiques des patients regroupés par tête de chapitre du MeSH-maladie. La solution présentée est celle d’un classifieur multilabel basé sur un transformer. Deux transformers ont été utilisés : le camembert-large classique (run 1) et le camembert-large fine-tuné (run 2) sur des articles biomédicaux français en accès libre. Nous avons également proposé un modèle « bout-enbout », avec une première phase d’extraction d’entités nommées également basée sur un transformer de type camembert-large et un classifieur de genre sur un modèle Adaboost. Nous obtenons un très bon rappel et une précision correcte, pour une F1-mesure autour de 0,77 pour les trois runs. La performance du modèle « bout-en-bout » est similaire aux autres méthodes.