Chongyang Shi
2023
Causal Intervention for Abstractive Related Work Generation
Jiachang Liu
|
Qi Zhang
|
Chongyang Shi
|
Usman Naseem
|
Shoujin Wang
|
Liang Hu
|
Ivor Tsang
Findings of the Association for Computational Linguistics: EMNLP 2023
Abstractive related work generation has attracted increasing attention in generating coherent related work that helps readers grasp the current research. However, most existing models ignore the inherent causality during related work generation, leading to spurious correlations which downgrade the models’ generation quality and generalizability. In this study, we argue that causal intervention can address such limitations and improve the quality and coherence of generated related work. To this end, we propose a novel Causal Intervention Module for Related Work Generation (CaM) to effectively capture causalities in the generation process. Specifically, we first model the relations among the sentence order, document (reference) correlations, and transitional content in related work generation using a causal graph. Then, to implement causal interventions and mitigate the negative impact of spurious correlations, we use do-calculus to derive ordinary conditional probabilities and identify causal effects through CaM. Finally, we subtly fuse CaM with Transformer to obtain an end-to-end related work generation framework. Extensive experiments on two real-world datasets show that CaM can effectively promote the model to learn causal relations and thus produce related work of higher quality and coherence.
Multiview Clickbait Detection via Jointly Modeling Subjective and Objective Preference
Chongyang Shi
|
Yijun Yin
|
Qi Zhang
|
Liang Xiao
|
Usman Naseem
|
Shoujin Wang
|
Liang Hu
Findings of the Association for Computational Linguistics: EMNLP 2023
Clickbait posts tend to spread inaccurate or misleading information to manipulate people’s attention and emotions, which greatly harms the credibility of social media. Existing clickbait detection models rely on analyzing the objective semantics in posts or correlating posts with article content only. However, these models fail to identify and exploit the manipulation intention of clickbait from a user’s subjective perspective, leading to limited capability to explore comprehensive clues of clickbait. To address such a issue, we propose a multiview clickbait detection model, named MCDM, to model subjective and objective preferences simultaneously. MCDM introduces two novel complementary modules for modeling subjective feeling and objective content relevance, respectively. The subjective feeling module adopts a user-centric approach to capture subjective features of posts, such as language patterns and emotional inclinations. The objective module explores news elements from posts and models article content correlations to capture objective clues for clickbait detection. Extensive experimental results on two real-world datasets show that our proposed MCDM outperforms state-of-the-art approaches for clickbait detection, verifying the effectiveness of integrating subjective and objective preferences for detecting clickbait.
2020
Balanced Joint Adversarial Training for Robust Intent Detection and Slot Filling
Xu Cao
|
Deyi Xiong
|
Chongyang Shi
|
Chao Wang
|
Yao Meng
|
Changjian Hu
Proceedings of the 28th International Conference on Computational Linguistics
Joint intent detection and slot filling has recently achieved tremendous success in advancing the performance of utterance understanding. However, many joint models still suffer from the robustness problem, especially on noisy inputs or rare/unseen events. To address this issue, we propose a Joint Adversarial Training (JAT) model to improve the robustness of joint intent detection and slot filling, which consists of two parts: (1) automatically generating joint adversarial examples to attack the joint model, and (2) training the model to defend against the joint adversarial examples so as to robustify the model on small perturbations. As the generated joint adversarial examples have different impacts on the intent detection and slot filling loss, we further propose a Balanced Joint Adversarial Training (BJAT) model that applies a balance factor as a regularization term to the final loss function, which yields a stable training procedure. Extensive experiments and analyses on the lightweight models show that our proposed methods achieve significantly higher scores and substantially improve the robustness of both intent detection and slot filling. In addition, the combination of our BJAT with BERT-large achieves state-of-the-art results on two datasets.
Search
Co-authors
- Qi Zhang 2
- Usman Naseem 2
- Shoujin Wang 2
- Liang Hu 2
- Xu Cao 1
- show all...