Cane Wing-Ki Leung

Also published as: Cane Wing-ki Leung


2021

pdf
Improving Model Generalization: A Chinese Named Entity Recognition Case Study
Guanqing Liang | Cane Wing-Ki Leung
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Generalization is an important ability that helps to ensure that a machine learning model can perform well on unseen data. In this paper, we study the effect of data bias on model generalization, using Chinese Named Entity Recognition (NER) as a case study. Specifically, we analyzed five benchmarking datasets for Chinese NER, and observed the following two types of data bias that can compromise model generalization ability. Firstly, the test sets of all the five datasets contain a significant proportion of entities that have been seen in the training sets. Such test data would therefore not be able to reflect the true generalization ability of a model. Secondly, all datasets are dominated by a few fat-head entities, i.e., entities appearing with particularly high frequency. As a result, a model might be able to produce high prediction accuracy simply by keyword memorization without leveraging context knowledge. To address these data biases, we first refine each test set by excluding seen entities from it, so as to better evaluate a model’s generalization ability. Then, we propose a simple yet effective entity resampling method to make entities within the same category distributed equally, encouraging a model to leverage both name and context knowledge in the training process. Experimental results demonstrate that the proposed entity resampling method significantly improves a model’s ability in detecting unseen entities, especially for company, organization and position categories.

2020

pdf
Target-Guided Structured Attention Network for Target-Dependent Sentiment Analysis
Ji Zhang | Chengyao Chen | Pengfei Liu | Chao He | Cane Wing-Ki Leung
Transactions of the Association for Computational Linguistics, Volume 8

Target-dependent sentiment analysis (TDSA) aims to classify the sentiment of a text towards a given target. The major challenge of this task lies in modeling the semantic relatedness between a target and its context sentence. This paper proposes a novel Target-Guided Structured Attention Network (TG-SAN), which captures target-related contexts for TDSA in a fine-to-coarse manner. Given a target and its context sentence, the proposed TG-SAN first identifies multiple semantic segments from the sentence using a target-guided structured attention mechanism. It then fuses the extracted segments based on their relatedness with the target for sentiment classification. We present comprehensive comparative experiments on three benchmarks with three major findings. First, TG-SAN outperforms the state-of-the-art by up to 1.61% and 3.58% in terms of accuracy and Marco-F1, respectively. Second, it shows a strong advantage in determining the sentiment of a target when the context sentence contains multiple semantic segments. Lastly, visualization results show that the attention scores produced by TG-SAN are highly interpretable

2011

pdf
Unsupervised Information Extraction with Distributional Prior Knowledge
Cane Wing-ki Leung | Jing Jiang | Kian Ming A. Chai | Hai Leong Chieu | Loo-Nin Teow
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing