Tanbih: Get To Know What You Are Reading

Yifan Zhang, Giovanni Da San Martino, Alberto Barrón-Cedeño, Salvatore Romeo, Jisun An, Haewoon Kwak, Todor Staykovski, Israa Jaradat, Georgi Karadzhov, Ramy Baly, Kareem Darwish, James Glass, Preslav Nakov


Abstract
We introduce Tanbih, a news aggregator with intelligent analysis tools to help readers understanding what’s behind a news story. Our system displays news grouped into events and generates media profiles that show the general factuality of reporting, the degree of propagandistic content, hyper-partisanship, leading political ideology, general frame of reporting, and stance with respect to various claims and topics of a news outlet. In addition, we automatically analyse each article to detect whether it is propagandistic and to determine its stance with respect to a number of controversial topics.
Anthology ID:
D19-3038
Volume:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Sebastian Padó, Ruihong Huang
Venues:
EMNLP | IJCNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
223–228
Language:
URL:
https://aclanthology.org/D19-3038
DOI:
10.18653/v1/D19-3038
Bibkey:
Cite (ACL):
Yifan Zhang, Giovanni Da San Martino, Alberto Barrón-Cedeño, Salvatore Romeo, Jisun An, Haewoon Kwak, Todor Staykovski, Israa Jaradat, Georgi Karadzhov, Ramy Baly, Kareem Darwish, James Glass, and Preslav Nakov. 2019. Tanbih: Get To Know What You Are Reading. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, pages 223–228, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
Tanbih: Get To Know What You Are Reading (Zhang et al., EMNLP-IJCNLP 2019)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-bitext-workshop/D19-3038.pdf