WIQA: A dataset for “What if...” reasoning over procedural text

Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Peter Clark, Antoine Bosselut


Abstract
We introduce WIQA, the first large-scale dataset of “What if...” questions over procedural text. WIQA contains a collection of paragraphs, each annotated with multiple influence graphs describing how one change affects another, and a large (40k) collection of “What if...?” multiple-choice questions derived from these. For example, given a paragraph about beach erosion, would stormy weather hasten or decelerate erosion? WIQA contains three kinds of questions: perturbations to steps mentioned in the paragraph; external (out-of-paragraph) perturbations requiring commonsense knowledge; and irrelevant (no effect) perturbations. We find that state-of-the-art models achieve 73.8% accuracy, well below the human performance of 96.3%. We analyze the challenges, in particular tracking chains of influences, and present the dataset as an open challenge to the community.
Anthology ID:
D19-1629
Volume:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
Venues:
EMNLP | IJCNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
6076–6085
Language:
URL:
https://aclanthology.org/D19-1629
DOI:
10.18653/v1/D19-1629
Bibkey:
Cite (ACL):
Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Peter Clark, and Antoine Bosselut. 2019. WIQA: A dataset for “What if...” reasoning over procedural text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6076–6085, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
WIQA: A dataset for “What if…” reasoning over procedural text (Tandon et al., EMNLP-IJCNLP 2019)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-bitext-workshop/D19-1629.pdf
Attachment:
 D19-1629.Attachment.zip