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Abstract

This paper investigates the effectiveness of
pre-training for few-shot intent classification.
While existing paradigms commonly further
pre-train language models such as BERT on
a vast amount of unlabeled corpus, we find it
highly effective and efficient to simply fine-
tune BERT with a small set of labeled ut-
terances from public datasets. Specifically,
fine-tuning BERT with roughly 1,000 labeled
data yields a pre-trained model – IntentBERT,
which can easily surpass the performance of
existing pre-trained models for few-shot in-
tent classification on novel domains with very
different semantics. The high effectiveness
of IntentBERT confirms the feasibility and
practicality of few-shot intent detection, and
its high generalization ability across differ-
ent domains suggests that intent classification
tasks may share a similar underlying struc-
ture, which can be efficiently learned from a
small set of labeled data. The source code
can be found at https://github.com/
hdzhang-code/IntentBERT.

1 Introduction

Task-oriented dialogue systems have been widely
deployed to a variety of sectors (Yan et al., 2017;
Chen et al., 2017; Zhang et al., 2020c; Hosseini-
Asl et al., 2020), ranging from shopping (Yan et al.,
2017) to medical services (Arora et al., 2020a;
Wei et al., 2018), to provide interactive experience.
Training an accurate intent classifier is vital for
the development of such task-oriented dialogue
systems. However, an important issue is how to
achieve this when only limited number of labeled
instances are available, which is often the case at
the early development stage.

To tackle few-shot intent detection, some re-
cent attempts employ induction network (Geng
et al., 2019), generation-based methods (Xia et al.,
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Figure 1: Visualization of the embedding spaces with
t-SNE. We randomly sample 10 classes and 500 data
per class from BANKING77 (best viewed in color).

2020a,b), metric learning (Nguyen et al., 2020), or
self-training (Dopierre et al., 2020). These works
mainly focus on designing novel algorithms for
representation learning and inference, which often
comes with complicated models. Most recently,
large-scale pre-trained language models such as
BERT (Devlin et al., 2019; Radford et al., 2019;
Brown et al., 2020) have shown great promise in
many natural language understanding tasks (Wang
et al., 2019), and there has been a surge of inter-
est in fine-tuning the pre-trained language models
for intent detection (Zhang et al., 2020a,b; Peng
et al., 2020; Wu et al., 2020; Casanueva et al., 2020;
Larson et al., 2019).

While fine-tuning pre-trained language models
on large-scale annotated datasets has yielded signif-
icant improvements in many tasks including intent
detection, it is laborious and expensive to construct
large-scale annotated datasets in new application
domains. Therefore, recent efforts have been dedi-
cated to adapting pre-trained language models to a
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specific task such as intent detection by conducting
continued pre-training (Gururangan et al., 2020; Gu
et al., 2021) on a large unlabeled dialogue corpus
with a specially designed optimization objective.
Below we summarize the most related works in this
line of research for few-shot intent detection.

• CONVBERT (Mehri et al., 2020) finetunes
BERT on an unlabeled dialogue corpus con-
sisting of nearly 700 million conversations.

• TOD-BERT (Wu et al., 2020) further pre-
trains BERT on a task-oriented dialogue
corpus of 100, 000 unlabeled samples with
masked language modelling (MLM) and re-
sponse contrastive objectives.

• USE-ConveRT (Henderson et al., 2020;
Casanueva et al., 2020) investigates a dual en-
coder model trained with response selection
tasks on 727 million input-response pairs.

• DNNC (Zhang et al., 2020a) pre-trains a lan-
guage model with around 1 million annotated
samples for natural language inference (NLI)
and use the pre-trained model for intent detec-
tion.

• WikiHowRoBERTa (Zhang et al., 2020b)
constructs some pre-training tasks based on
the wikiHow database with 110, 000 articles.

While these methods have achieved impressive
performance, they heavily rely on the existence
of a large-scale corpus (Mehri et al., 2020) that is
close in semantics to the target domain or consists
of similar tasks for continued pre-training, which
needs huge effort for data collection and comes at
a high computational cost. More importantly, they
completely ignore the “free lunch” – the publicly
available, high-quality, manually-annotated intent
detection benchmarks. For example, the dataset
OOS (Larson et al., 2019) provides labeled utter-
ances across 10 different domains. Hence, our
study in this paper centers around the following
research question:

• Is it possible to utilize publicly available
datasets to pre-train an intent detection model
that can learn transferable task-specific knowl-
edge to generalize across different domains?

In this paper, we provide an affirmative answer
to this question. We fine-tune BERT using a simple

standard supervised training with approximately
1,000 labeled utterances from public datasets and
obtain a pre-trained model, called IntentBERT. It
can be directly applied for few-shot intent classi-
fication on a target domain that is drastically dif-
ferent from the pre-training data and significantly
outperform existing pre-trained models, without
further fine-tuning on target data (labeled or unla-
beled). This simple “free-lunch” solution not only
confirms the feasibility and practicality of few-shot
intent detection, but also provides a ready-to-use
well-performing model for practical use, saving
the effort in algorithm design and data collection.
Moreover, the high generalization ability of In-
tentBERT on cross-domain few-shot classification
tasks, which are generally considered very difficult
due to large domain gaps and the few data con-
straint, suggests that most intent detection tasks
probably share a common underlying structure that
could be learned from a small set of data.

Further, to leverage unlabeled data in the tar-
get domain, we design a joint pre-training scheme,
which simultaneously optimizes the classification
error on the source labeled data and the language
modeling loss on the target unlabeled data. This
joint-training scheme can learn better semantic rep-
resentations and significantly outperforms existing
two-stage pre-training methods (Gururangan et al.,
2020). A visualization of the embedding spaces
produced by strong baselines and our methods is
provided in Fig. 1, which clearly demonstrates the
superiority of our pre-trained models.

2 Methodology

We present a continued pre-training framework for
intent classification based on the pre-trained lan-
guage model BERT (Devlin et al., 2019).

Our pre-training method relies on the existence
of a small labeled dataset Dlabeled

source = {(xi, yi)},
where yi is the label of utterance xi. Such data
samples can be readily obtained from public intent
detection datasets such as OOS (Larson et al., 2019)
and HWU64 (Liu et al., 2021). As will be shown
in the experiments, roughly 1, 000 examples from
either OOS or HWU64 are enough for the pre-
trained intent detection model to achieve a superior
performance on drastically different target domains
such as “Covid-19”.

We further consider a scenario that unlabeled ut-
terances Dunlabeled

target = {xi} in the target domain are
available, and propose a joint pre-training scheme



that is empirically proven to be highly effective.

2.1 Supervised Pre-training
Given Dlabeled

source = {(xi, yi)} with N different
classes, we employ a simple method to fine-tune
BERT. Specifically, a linear layer is attached on top
of BERT as the classifier, i.e.,

p(y|hi) = softmax (Whi + b) ∈ RN , (1)

where hi ∈ Rd is the feature representation of
xi given by the [CLS] token, W ∈ RN×d and
b ∈ RN are parameters of the linear layer. The
model parameters θ = {ϕ,W,b}, with ϕ being
the parameters of BERT, are trained on Dlabeled

source
with a cross-entropy loss:

θ∗ = argmin
θ

Lce

(
Dlabeled

source ; θ
)
. (2)

After training, the fine-tuned BERT is expected
to have learned general intent detection skills, and
hence we call it IntentBERT.

2.2 Joint Pre-training
Given unlabeled target data Dunlabeled

target , we can lever-
age it to further enhance our IntentBERT, by simul-
taneously optimizing a language modeling loss on
Dunlabeled

target and the supervised loss in Eq. (2). The
language modeling loss can help to learn semantic
representations of the target domain while prevent-
ing overfitting to the source data.

Specifically, we use MLM as the language mod-
eling loss, in which a proportion of input tokens
are masked with the special token [MASK] and
the model is trained to retrieve the masked tokens.
The joint training loss is formulated as:

Ljoint = Lce(Dlabeled
source ; θ) + λLmlm(Dunlabeled

target ; θ),
(3)

where λ is a hyperparameter that balances the su-
pervised loss and the unsupervised loss.

2.3 Few-shot Intent Classification
After pre-training, the parameters of IntentBERT
are fixed, and it can be immediately used as a fea-
ture extractor for novel few-shot intent classifica-
tion tasks. The classifier can be a parametric one
such as logistic regression or a non-parametric one
such as nearest neighbor. A parametric classifier
will be trained with the few labeled examples pro-
vided in a task and make predictions on the unla-
beled queries. As will be shown in the experiments,
a simple linear classifier suffices to achieve very

good performance, thanks to the effective utterance
representations produced by IntentBERT.

3 Experiments

3.1 Experimental Setup

Figure 2: Vocabulary overlap.

Datasets. To train our IntentBERT, we continue
to pre-train BERT on either of the two datasets,
OOS (Larson et al., 2019)1 and HWU64 (Liu
et al., 2021), both of which contain multiple do-
mains, providing rich resources to learn from2.
For evaluation, we employ three datasets: BANK-
ING77 (Casanueva et al., 2020) is a fine-grained
intent detection dataset focusing on “Banking”;
MCID (Arora et al., 2020a) is a dataset for “Covid-
19” chat bots; HINT3 (Arora et al., 2020b) con-
tains 3 domains, “Mattress Products Retail”, “Fit-
ness Supplements Retail” and “Online Gaming”.
Dataset statistics are summarized in Table 2.

Fig. 2 visualizes the vocabulary overlap between
the source training data and target test data, which
is calculated as the proportion of the shared words
in the combined vocabulary of any two datasets
after removing stop words. It is observed that the
overlaps are quite small, indicating the existence
of large semantic gaps.

Evaluation. The classification performance is
evaluated by C-way K-shot tasks. For each task,
We randomly sample C classes and K examples
per class to train the classifier, and then we sample
extra 5 examples per class as queries for evaluation.
The accuracy is averaged over 500 such tasks.

Baselines. We compare IntentBERT to the fol-
lowing strong baselines. BERT-Freeze simply
freeze the off-the-shelf BERT; TOD-BERT (Wu
et al., 2020) further pre-trains BERT on a huge

1The domains “Banking” and “Credit Cards” are excluded
because they are semantically close to the evaluation data.

2We have also experimented with the combination of both
datasets but observed no better results.



Method Dunlabeled
target

BANKING77 MCID HINT3

2-shot 10-shot 2-shot 10-shot 2-shot 10-shot

BERT-Freeze ✗ 52.6 ±12.4 70.0 ±11.7 57.8 ±11.7 72.4 ±10.7 47.3 ±12.1 66.8 ±10.5

CONVBERT ✗ 68.3 ±12.3 86.6 ±8.2 67.7 ±11.5 83.5 ±7.9 72.6 ±10.9 87.2 ±7.9

TOD-BERT ✗ 77.7 ±7.4 89.4 ±5.1 64.1 ±9.0 77.7 ±11.0 68.9 ±11.7 83.5 ±8.6

USE-ConveRT¶ ✗ – 85.2 – – – –
DNNC ✗ 67.5 ±15.4 89.8 ±7.5 56.2 ±16.7 80.0 ±9.9 64.1 ±14.8 87.9 ±8.1

WikiHowRoBERTa ✗ 34.9 ±10.5 41.6 ±10.1 30.8 ±9.9 36.4 ±9.7 31.7 ±10.3 39.0 ±9.9

IntentBERT (HWU64) (ours) ✗ 78.4 ±10.6 90.0 ±7.5 74.5 ±11.9 85.9 ±8.8 77.9 ±10.6 89.4 ±7.9

IntentBERT (OOS) (ours) ✗ 82.4 ±8.3 91.8 ±4.2 77.1 ±9.0 88.1 ±5.9 80.1 ±10.4 90.2 ±7.4

IntentBERT (OOS)+MLM (ours) ✓ 88.9 ±9.0 95.2 ±5.1 86.3 ±9.8 92.4 ±6.2 87.1 ±9.8 94.0 ±6.0

Table 1: Main results for 5-way tasks. ¶ stands for results from the original paper.

Dataset #domain #intent #utterances

OOS 8 120 18000
HWU64 21 64 25716

BANKING77 1 77 13083
MCID 1 16 1745
HINT3 3 51 2011

Table 2: Dataset statistics.

amount of task-oriented conversations with MLM
and response selection tasks; CONVBERT (Mehri
et al., 2020) further pre-trains BERT on a large
open-domain multi-turn dialogue corpus; USE-
ConveRT (Henderson et al., 2020; Casanueva
et al., 2020) is a fast embedding-based clas-
sifier pre-trained on an open-domain dialogue
corpus by dialogue response selection tasks;
DNNC (Zhang et al., 2020a) further pre-trains a
BERT-based model on NLI tasks and then applies
a similarity-based classifier for classification; Wik-
iHowRoBERTa (Zhang et al., 2020b) further pre-
trains RoBERTa (Liu et al., 2019) on fake intent
detection data synthesized from wikiHow3.

All the baselines (except BERT-Freeze) adopt a
second pre-training stage, but with different objec-
tives and on different corpus. In our experiments,
all the baselines (except DNNC) use logistic re-
gression as the classifier. For DNNC, we strictly
follow the original implementation4 to pre-train a
BERT-style pairwise encoder to estimate the best
matched training example for a query utterance.

Training details. We use BERTbase
5 (the base

configuration with d = 768) as the encoder, Adam
(Kingma and Ba, 2015) as the optimizer, and Py-
Torch library for implementation. The model is
trained with Nvidia GeForce RTX 2080 Ti GPUs.

3https://www.wikihow.com/
4https://github.com/salesforce/DNNC-few-shot-intent
5https://github.com/huggingface/transformers

For supervised pre-training, we use validation to
control early-stop to prevent overfitting. Specif-
ically, we use HWU64 for validation when pre-
training with OOS and vice versa. The training is
stopped if no improvement in accuracy is observed
in 3 epochs. For joint pre-training, λ is set to 1.
The number of training epochs is fixed to 10, since
it is not prone to overfitting.

3.2 Main Results
The main results are provided in Table 1. First,
IntentBERT (either pre-trained with OOS or
HWU64) consistently outperforms all the baselines
by a significant margin in most cases. Take the
results of 5-way 2-shot classification on MCID
for example, IntentBERT (OOS) outperforms the
strongest baseline CONVBERT by an absolute mar-
gin of 9.4%, demonstrating the high effectiveness
of our pre-training method. The cross-domain
transferability of IntentBERT indicates that de-
spite semantic domain gaps, most intent detection
tasks probably share a similar underlying structure,
which could be learned with a small set of labeled
utterances. Second, IntentBERT (OOS) seems
to be more effective than IntentBERT (HWU64),
which may be due to the semantic diversity of the
training corpus. Nevertheless, the small difference
in performance between them shows that our pre-
training method is not sensitive to the training cor-
pus.

Finally, our proposed joint pre-training scheme
(Section 2.2) achieves significant improvement
over IntentBERT (up to 9.2% absolute margin),
showing the high effectiveness of joint pre-training
when target unlabeled data is accessible. Our joint
pre-training scheme can also be applied to other
language models such as GPT-2 (Radford et al.,
2019) and ELMo (Peters et al., 2018), which is left
as future work.



Figure 3: Effect of the amount of labeled data used for
pre-training in the source domain (OOS). The results
are evaluated on 5-way 2-shot tasks on BANKING77.

3.3 Analysis

Amount of labeled data for pre-training. We
reduce the data used for pre-training in two dimen-
sions: the number of domains and the number of
samples per class. We randomly sample 1, 2, 4 and
8 domains for multiple times and report the aver-
aged results in Fig. 3. It is found that the training
data can be dramatically reduced without harming
the performance. The model trained on 4 domains
and 20 samples per class performs on par with that
on 8 domains and 150 samples per class. In general,
we only need around 1, 000 annotated utterances
to train IntentBERT, which can be easily obtained
in public datasets. This finding indicates that using
small task-relevant data for pre-training may be a
more effective and efficient fine-tuning paradigm.

Amount of unlabeled data for joint pre-
training. We randomly sample a fraction of unla-
beled utterances and re-run the joint training. As
shown in Fig. 4, the accuracy keeps increasing
when the number of unlabeled samples grows from
10 to 1, 000 and tends to saturate after reaching
1, 000. Surprisingly, 1, 000 utterances in BANK-
ING77 can yield a comparable performance than
the full dataset (13, 083 utterances). Generally, it
does not need much unlabeled data to reach a high
accuracy.

Ablation study on joint pre-training. First, we
investigate a two-stage pre-training scheme (Gu-
rurangan et al., 2020) where we use BERT or In-
tentBERT as initialization and perform MLM in
the target domain (the top two rows in Table 3). It
can be seen that they perform much worse than our
joint pre-training scheme (the bottom row). Sec-
ond, we use the source data instead of the target
data for MLM in joint pre-training (the third row),

Figure 4: Effect of the amount of unlabeled data used
for joint pre-training in the target domain. The results
are evaluated on 5-way 2-shot tasks with OOS as the
source dataset.

and observe consistent performance drops, which
shows the necessity of a domain-specific corpus.

Methods BANK MCID HINT3

BERT→MLM(target) 80.5 63.0 72.0
IntentBERT→MLM(target) 82.0 75.9 77.9
IntentBERT+MLM(source) 84.1 75.9 78.5
IntentBERT+MLM(target) 88.9 86.3 87.1

Table 3: Ablation study on joint pre-training. BANK
denotes BANKING77. → denotes moving to the next
training stage. + denotes joint optimization of both
loss functions. The data used for the experiment (either
from "target" or "source") is shown in the brackets. The
results are evaluated on 5-way 2-shot tasks with OOS
as the source dataset.

4 Conclusion

We have proposed IntentBERT, a pre-trained model
for few-shot intent classification, which is obtained
by fine-tuning BERT on a small set of publicly
available labeled utterances. We have shown that
using small task-relevant data for fine-tuning is
far more effective and efficient than current prac-
tice that fine-tunes on a large labeled or unlabeled
dialogue corpus. This finding may have a wide
implication for other tasks besides intent detection.
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