Nguyen Lam Phu Quy
2025
DRAGON: Dual-Encoder Retrieval with Guided Ontology Reasoning for Medical Normalization
Dao Sy Duy Minh
|
Nguyen Lam Phu Quy
|
Pham Phu Hoa
|
Tran Chi Nguyen
|
Huynh Trung Kiet
|
Truong Bao Tran
Proceedings of The 23rd Annual Workshop of the Australasian Language Technology Association
Adverse Drug Event (ADE) normalization to standardized medical terminologies such as MedDRA presents significant challenges due to lexical and semantic gaps between colloquial user-generated content and formal medical vocabularies. This paper presents our submission to the ALTA 2025 Shared Task on ADE normalization, evaluated using Accuracy@k metrics. Our approach employs distinct methodologies for the development and test phase. In the development phase, we propose a three-stage neural architecture: (1) bi-encoder training to establish semantic representations, (2) lexical-aware fine-tuning to capture morphological patterns alongside semantic similarity, and (3) crossencoder re-ranking for fine-grained discrimination, enabling the model to leverage both distributional semantics and lexical cues through explicit interaction modeling. For the test phase, we utilize the trained bi-encoder from stage (1) for efficient candidate retrieval, then adopt an alternative re-ranking pipeline leveraging large language models with tool-augmented retrieval and multi-stage reasoning. Specifically, a capable model performs reasoning-guided candidate selection over the retrieved top-k results, a lightweight model provides iterative feedback based on reasoning traces, and an automated verification module ensures output correctness with self-correction mechanisms. Our system achieves competitive performance on both development and test benchmarks, demonstrating the efficacy of neural retrieval-reranking architectures and the versatility of LLM-augmented neural pipelines for medical entity normalization tasks.