Zimu Wang
2023
OmniEvent: A Comprehensive, Fair, and Easy-to-Use Toolkit for Event Understanding
Hao Peng
|
Xiaozhi Wang
|
Feng Yao
|
Zimu Wang
|
Chuzhao Zhu
|
Kaisheng Zeng
|
Lei Hou
|
Juanzi Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Event understanding aims at understanding the content and relationship of events within texts, which covers multiple complicated information extraction tasks: event detection, event argument extraction, and event relation extraction. To facilitate related research and application, we present an event understanding toolkit OmniEvent, which features three desiderata: (1) Comprehensive. OmniEvent supports mainstream modeling paradigms of all the event understanding tasks and the processing of 15 widely-used English and Chinese datasets. (2) Fair. OmniEvent carefully handles the inconspicuous evaluation pitfalls reported in Peng et al. (2023), which ensures fair comparisons between different models. (3) Easy-to-use. OmniEvent is designed to be easily used by users with varying needs. We provide off-the-shelf models that can be directly deployed as web services. The modular framework also enables users to easily implement and evaluate new event understanding models with OmniEvent. The toolkit is publicly released along with the demonstration website and video.
2022
MAVEN-ERE: A Unified Large-scale Dataset for Event Coreference, Temporal, Causal, and Subevent Relation Extraction
Xiaozhi Wang
|
Yulin Chen
|
Ning Ding
|
Hao Peng
|
Zimu Wang
|
Yankai Lin
|
Xu Han
|
Lei Hou
|
Juanzi Li
|
Zhiyuan Liu
|
Peng Li
|
Jie Zhou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
The diverse relationships among real-world events, including coreference, temporal, causal, and subevent relations, are fundamental to understanding natural languages. However, two drawbacks of existing datasets limit event relation extraction (ERE) tasks: (1) Small scale. Due to the annotation complexity, the data scale of existing datasets is limited, which cannot well train and evaluate data-hungry models. (2) Absence of unified annotation. Different types of event relations naturally interact with each other, but existing datasets only cover limited relation types at once, which prevents models from taking full advantage of relation interactions. To address these issues, we construct a unified large-scale human-annotated ERE dataset MAVEN-ERE with improved annotation schemes. It contains 103,193 event coreference chains, 1,216,217 temporal relations, 57,992 causal relations, and 15,841 subevent relations, which is larger than existing datasets of all the ERE tasks by at least an order of magnitude. Experiments show that ERE on MAVEN-ERE is quite challenging, and considering relation interactions with joint learning can improve performances. The dataset and source codes can be obtained from https://github.com/THU-KEG/MAVEN-ERE.
Search
Co-authors
- Xiaozhi Wang 2
- Hao Peng 2
- Lei Hou 2
- Juanzi Li 2
- Yulin Chen 1
- show all...