Large language models have made remarkable progress on a variety of NLP tasks. However, it has been found that they tend to rely on shortcut features that spuriously correlate with labels for prediction, which weakens their generalization on out-of-distribution samples. In this paper, we propose a human attention guided approach to identifying and mitigating shortcut learning, which encourages the LLM-based target model to learn relevant features. We define an attention-based measurement to capture both model and data bias and identify shortcut tokens by exploring both human and neural attention. In a self-distillation framework, we mitigate shortcut learning by dynamically adjusting the distillation temperature according to the detected shortcut tokens and estimated shortcut degree. Additionally, we utilize human attention as a supervisory signal to constrain large language models to pay more attention to relevant tokens. Experimental results on multiple NLP tasks show that our proposed method can effectively identify shortcut tokens, and significantly improve the robustness of large language models on OOD samples, while not undermining the performance on IID data.
Cohesion devices, e.g., reiteration, coreference, are crucial for building cohesion links across sentences. In this paper, we propose a document-level neural machine translation framework, CoDoNMT, which models cohesion devices from two perspectives: Cohesion Device Masking (CoDM) and Cohesion Attention Focusing (CoAF). In CoDM, we mask cohesion devices in the current sentence and force NMT to predict them with inter-sentential context information. A prediction task is also introduced to be jointly trained with NMT. In CoAF, we attempt to guide the model to pay exclusive attention to relevant cohesion devices in the context when translating cohesion devices in the current sentence. Such a cohesion attention focusing strategy is softly applied to the self-attention layer. Experiments on three benchmark datasets demonstrate that our approach outperforms state-of-the-art document-level neural machine translation baselines. Further linguistic evaluation validates the effectiveness of the proposed model in producing cohesive translations.
Most previous studies integrate cognitive language processing signals (e.g., eye-tracking or EEG data) into neural models of natural language processing (NLP) just by directly concatenating word embeddings with cognitive features, ignoring the gap between the two modalities (i.e., textual vs. cognitive) and noise in cognitive features. In this paper, we propose a CogAlign approach to these issues, which learns to align textual neural representations to cognitive features. In CogAlign, we use a shared encoder equipped with a modality discriminator to alternatively encode textual and cognitive inputs to capture their differences and commonalities. Additionally, a text-aware attention mechanism is proposed to detect task-related information and to avoid using noise in cognitive features. Experimental results on three NLP tasks, namely named entity recognition, sentiment analysis and relation extraction, show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets. Moreover, our model is able to transfer cognitive information to other datasets that do not have any cognitive processing signals.