Yongqi Zhang


2023

pdf
Learning to Describe for Predicting Zero-shot Drug-Drug Interactions
Fangqi Zhu | Yongqi Zhang | Lei Chen | Bing Qin | Ruifeng Xu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Adverse drug-drug interactions (DDIs) can compromise the effectiveness of concurrent drug administration, posing a significant challenge in healthcare. As the development of new drugs continues, the potential for unknown adverse effects resulting from DDIs becomes a growing concern. Traditional computational methods for DDI prediction may fail to capture interactions for new drugs due to the lack of knowledge. In this paper, we introduce a new problem setup as zero-shot DDI prediction that deals with the case of new drugs. Leveraging textual information from online databases like DrugBank and PubChem, we propose an innovative approach TextDDI with a language model-based DDI predictor and a reinforcement learning (RL)-based information selector, enabling the selection of concise and pertinent text for accurate DDI prediction on new drugs. Empirical results show the benefits of the proposed approach on several settings including zero-shot and few-shot DDI prediction, and the selected texts are semantically relevant. Our code and data are available at https://github.com/zhufq00/DDIs-Prediction.

pdf
Relation-aware Ensemble Learning for Knowledge Graph Embedding
Ling Yue | Yongqi Zhang | Quanming Yao | Yong Li | Xian Wu | Ziheng Zhang | Zhenxi Lin | Yefeng Zheng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Knowledge graph (KG) embedding is a fundamental task in natural language processing, and various methods have been proposed to explore semantic patterns in distinctive ways. In this paper, we propose to learn an ensemble by leveraging existing methods in a relation-aware manner. However, exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods. To address this issue, we propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently. This algorithm has the same computation cost as general ensemble methods but with much better performance. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method in efficiently searching relation-aware ensemble weights and achieving state-of-the-art embedding performance. The code is public at https://github.com/LARS-research/RelEns.

2022

pdf
Efficient Hyper-parameter Search for Knowledge Graph Embedding
Yongqi Zhang | Zhanke Zhou | Quanming Yao | Yong Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While hyper-parameters (HPs) are important for knowledge graph (KG) learning, existing methods fail to search them efficiently. To solve this problem, we first analyze the properties of different HPs and measure the transfer ability from small subgraph to the full graph. Based on the analysis, we propose an efficient two-stage search algorithm KGTuner, which efficiently explores HP configurations on small subgraph at the first stage and transfers the top-performed configurations for fine-tuning on the large full graph at the second stage. Experiments show that our method can consistently find better HPs than the baseline algorithms within the same time budget, which achieves 9.1% average relative improvement for four embedding models on the large-scale KGs in open graph benchmark. Our code is released in https://github.com/AutoML-Research/KGTuner.