Yongqi Li


2023

pdf
Generating Commonsense Counterfactuals for Stable Relation Extraction
Xin Miao | Yongqi Li | Tieyun Qian
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent studies on counterfactual augmented data have achieved great success in the coarse-grained natural language processing tasks. However, existing methods encounter two major problems when dealing with the fine-grained relation extraction tasks. One is that they struggle to accurately identify causal terms under the invariant entity constraint. The other is that they ignore the commonsense constraint. To solve these problems, we propose a novel framework to generate commonsense counterfactuals for stable relation extraction. Specifically, to identify causal terms accurately, we introduce an intervention-based strategy and leverage a constituency parser for correction. To satisfy the commonsense constraint, we introduce the concept knowledge base WordNet and design a bottom-up relation expansion algorithm on it to uncover commonsense relations between entities. We conduct a series of comprehensive evaluations, including the low-resource, out-of-domain, and adversarial-attack settings. The results demonstrate that our framework significantly enhances the stability of base relation extraction models.

pdf
Multiview Identifiers Enhanced Generative Retrieval
Yongqi Li | Nan Yang | Liang Wang | Furu Wei | Wenjie Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Instead of simply matching a query to pre-existing passages, generative retrieval generates identifier strings of passages as the retrieval target. At a cost, the identifier must be distinctive enough to represent a passage. Current approaches use either a numeric ID or a text piece (such as a title or substrings) as the identifier. However, these identifiers cannot cover a passage’s content well. As such, we are motivated to propose a new type of identifier, synthetic identifiers, that are generated based on the content of a passage and could integrate contextualized information that text pieces lack. Furthermore, we simultaneously consider multiview identifiers, including synthetic identifiers, titles, and substrings. These views of identifiers complement each other and facilitate the holistic ranking of passages from multiple perspectives. We conduct a series of experiments on three public datasets, and the results indicate that our proposed approach performs the best in generative retrieval, demonstrating its effectiveness and robustness.

pdf
Type-Aware Decomposed Framework for Few-Shot Named Entity Recognition
Yongqi Li | Yu Yu | Tieyun Qian
Findings of the Association for Computational Linguistics: EMNLP 2023

Despite the recent success achieved by several two-stage prototypical networks in few-shot named entity recognition (NER) task, the over-detected false spans at span detection stage and the inaccurate and unstable prototypes at type classification stage remain to be challenging problems. In this paper, we propose a novel Type-Aware Decomposed framework, namely TadNER, to solve these problems. We first present a type-aware span filtering strategy to filter out false spans by removing those semantically far away from type names. We then present a type-aware contrastive learning strategy to construct more accurate and stable prototypes by jointly exploiting support samples and type names as references. Extensive experiments on various benchmarks prove that our proposed TadNER framework yields a new state-of-the-art performance.

2022

pdf
MMCoQA: Conversational Question Answering over Text, Tables, and Images
Yongqi Li | Wenjie Li | Liqiang Nie
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The rapid development of conversational assistants accelerates the study on conversational question answering (QA). However, the existing conversational QA systems usually answer users’ questions with a single knowledge source, e.g., paragraphs or a knowledge graph, but overlook the important visual cues, let alone multiple knowledge sources of different modalities. In this paper, we hence define a novel research task, i.e., multimodal conversational question answering (MMCoQA), aiming to answer users’ questions with multimodal knowledge sources via multi-turn conversations. This new task brings a series of research challenges, including but not limited to priority, consistency, and complementarity of multimodal knowledge. To facilitate the data-driven approaches in this area, we construct the first multimodal conversational QA dataset, named MMConvQA. Questions are fully annotated with not only natural language answers but also the corresponding evidence and valuable decontextualized self-contained questions. Meanwhile, we introduce an end-to-end baseline model, which divides this complex research task into question understanding, multi-modal evidence retrieval, and answer extraction. Moreover, we report a set of benchmarking results, and the results indicate that there is ample room for improvement.