Yonggang Wen


2023

pdf
Discriminative Reasoning with Sparse Event Representation for Document-level Event-Event Relation Extraction
Changsen Yuan | Heyan Huang | Yixin Cao | Yonggang Wen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Document-level Event Causality Identification (DECI) aims to extract causal relations between events in a document. It challenges conventional sentence-level task (SECI) with difficult long-text understanding. In this paper, we propose a novel DECI model (SENDIR) for better document-level reasoning. Different from existing works that build an event graph via linguistic tools, SENDIR does not require any prior knowledge. The basic idea is to discriminate event pairs in the same sentence or span multiple sentences by assuming their different information density: 1) low density in the document suggests sparse attention to skip irrelevant information. Our module 1 designs various types of attention for event representation learning to capture long-distance dependence. 2) High density in a sentence makes SECI relatively easy. Module 2 uses different weights to highlight the roles and contributions of intra- and inter-sentential reasoning, which introduces supportive event pairs for joint modeling. Extensive experiments demonstrate great improvements in SENDIR and the effectiveness of various sparse attention for document-level representations. Codes will be released later.

2021

pdf
Are Missing Links Predictable? An Inferential Benchmark for Knowledge Graph Completion
Yixin Cao | Xiang Ji | Xin Lv | Juanzi Li | Yonggang Wen | Hanwang Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We present InferWiki, a Knowledge Graph Completion (KGC) dataset that improves upon existing benchmarks in inferential ability, assumptions, and patterns. First, each testing sample is predictable with supportive data in the training set. To ensure it, we propose to utilize rule-guided train/test generation, instead of conventional random split. Second, InferWiki initiates the evaluation following the open-world assumption and improves the inferential difficulty of the closed-world assumption, by providing manually annotated negative and unknown triples. Third, we include various inference patterns (e.g., reasoning path length and types) for comprehensive evaluation. In experiments, we curate two settings of InferWiki varying in sizes and structures, and apply the construction process on CoDEx as comparative datasets. The results and empirical analyses demonstrate the necessity and high-quality of InferWiki. Nevertheless, the performance gap among various inferential assumptions and patterns presents the difficulty and inspires future research direction. Our datasets can be found in https://github.com/TaoMiner/inferwiki.