Yi R. Fung
2022
A Zero-Shot Claim Detection Framework Using Question Answering
Revanth Gangi Reddy
|
Sai Chetan Chinthakindi
|
Yi R. Fung
|
Kevin Small
|
Heng Ji
Proceedings of the 29th International Conference on Computational Linguistics
In recent years, there has been an increasing interest in claim detection as an important building block for misinformation detection. This involves detecting more fine-grained attributes relating to the claim, such as the claimer, claim topic, claim object pertaining to the topic, etc. Yet, a notable bottleneck of existing claim detection approaches is their portability to emerging events and low-resource training data settings. In this regard, we propose a fine-grained claim detection framework that leverages zero-shot Question Answering (QA) using directed questions to solve a diverse set of sub-tasks such as topic filtering, claim object detection, and claimer detection. We show that our approach significantly outperforms various zero-shot, few-shot and task-specific baselines on the NewsClaims benchmark (Reddy et al., 2021).
Search