Yanzhen Shen
2023
Reaction Miner: An Integrated System for Chemical Reaction Extraction from Textual Data
Ming Zhong
|
Siru Ouyang
|
Yizhu Jiao
|
Priyanka Kargupta
|
Leo Luo
|
Yanzhen Shen
|
Bobby Zhou
|
Xianrui Zhong
|
Xuan Liu
|
Hongxiang Li
|
Jinfeng Xiao
|
Minhao Jiang
|
Vivian Hu
|
Xuan Wang
|
Heng Ji
|
Martin Burke
|
Huimin Zhao
|
Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Chemical reactions, as a core entity in the realm of chemistry, hold crucial implications in diverse areas ranging from hands-on laboratory research to advanced computational drug design. Despite a burgeoning interest in employing NLP techniques to extract these reactions, aligning this task with the real-world requirements of chemistry practitioners remains an ongoing challenge. In this paper, we present Reaction Miner, a system specifically designed to interact with raw scientific literature, delivering precise and more informative chemical reactions. Going beyond mere extraction, Reaction Miner integrates a holistic workflow: it accepts PDF files as input, bypassing the need for pre-processing and bolstering user accessibility. Subsequently, a text segmentation module ensures that the refined text encapsulates complete chemical reactions, augmenting the accuracy of extraction. Moreover, Reaction Miner broadens the scope of existing pre-defined reaction roles, including vital attributes previously neglected, thereby offering a more comprehensive depiction of chemical reactions. Evaluations conducted by chemistry domain users highlight the efficacy of each module in our system, demonstrating Reaction Miner as a powerful tool in this field.
Search
Co-authors
- Ming Zhong 1
- Siru Ouyang 1
- Yizhu Jiao 1
- Priyanka Kargupta 1
- Leo Luo 1
- show all...