2023
pdf
abs
Joint Constrained Learning with Boundary-adjusting for Emotion-Cause Pair Extraction
Huawen Feng
|
Junlong Liu
|
Junhao Zheng
|
Haibin Chen
|
Xichen Shang
|
Qianli Ma
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Emotion-Cause Pair Extraction (ECPE) aims to identify the document’s emotion clauses and corresponding cause clauses. Like other relation extraction tasks, ECPE is closely associated with the relationship between sentences. Recent methods based on Graph Convolutional Networks focus on how to model the multiplex relations between clauses by constructing different edges. However, the data of emotions, causes, and pairs are extremely unbalanced, and current methods get their representation using the same graph structure. In this paper, we propose a **J**oint **C**onstrained Learning framework with **B**oundary-adjusting for Emotion-Cause Pair Extraction (**JCB**). Specifically, through constrained learning, we summarize the prior rules existing in the data and force the model to take them into consideration in optimization, which helps the model learn a better representation from unbalanced data. Furthermore, we adjust the decision boundary of classifiers according to the relations between subtasks, which have always been ignored. No longer working independently as in the previous framework, the classifiers corresponding to three subtasks cooperate under the relation constraints. Experimental results show that **JCB** obtains competitive results compared with state-of-the-art methods and prove its robustness on unbalanced data.
pdf
abs
Preserving Commonsense Knowledge from Pre-trained Language Models via Causal Inference
Junhao Zheng
|
Qianli Ma
|
Shengjie Qiu
|
Yue Wu
|
Peitian Ma
|
Junlong Liu
|
Huawen Feng
|
Xichen Shang
|
Haibin Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Fine-tuning has been proven to be a simple and effective technique to transfer the learned knowledge of Pre-trained Language Models (PLMs) to downstream tasks. However, vanilla fine-tuning easily overfits the target data and degrades the generalization ability. Most existing studies attribute it to catastrophic forgetting, and they retain the pre-trained knowledge indiscriminately without identifying what knowledge is transferable. Motivated by this, we frame fine-tuning into a causal graph and discover that the crux of catastrophic forgetting lies in the missing causal effects from the pre-trained data. Based on the causal view, we propose a unified objective for fine-tuning to retrieve the causality back. Intriguingly, the unified objective can be seen as the sum of the vanilla fine-tuning objective, which learns new knowledge from target data, and the causal objective, which preserves old knowledge from PLMs. Therefore, our method is flexible and can mitigate negative transfer while preserving knowledge. Since endowing models with commonsense is a long-standing challenge, we implement our method on commonsense QA with a proposed heuristic estimation to verify its effectiveness. In the experiments, our method outperforms state-of-the-art fine-tuning methods on all six commonsense QA datasets and can be implemented as a plug-in module to inflate the performance of existing QA models.
2022
pdf
abs
Pair-Based Joint Encoding with Relational Graph Convolutional Networks for Emotion-Cause Pair Extraction
Junlong Liu
|
Xichen Shang
|
Qianli Ma
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Emotion-cause pair extraction (ECPE) aims to extract emotion clauses and corresponding cause clauses, which have recently received growing attention. Previous methods sequentially encode features with a specified order. They first encode the emotion and cause features for clause extraction and then combine them for pair extraction. This lead to an imbalance in inter-task feature interaction where features extracted later have no direct contact with the former. To address this issue, we propose a novel **P**air-**B**ased **J**oint **E**ncoding (**PBJE**) network, which generates pairs and clauses features simultaneously in a joint feature encoding manner to model the causal relationship in clauses. PBJE can balance the information flow among emotion clauses, cause clauses and pairs. From a multi-relational perspective, we construct a heterogeneous undirected graph and apply the Relational Graph Convolutional Network (RGCN) to capture the multiplex relationship between clauses and the relationship between pairs and clauses. Experimental results show that PBJE achieves state-of-the-art performance on the Chinese benchmark corpus.
2021
pdf
abs
A Span-based Dynamic Local Attention Model for Sequential Sentence Classification
Xichen Shang
|
Qianli Ma
|
Zhenxi Lin
|
Jiangyue Yan
|
Zipeng Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
Sequential sentence classification aims to classify each sentence in the document based on the context in which sentences appear. Most existing work addresses this problem using a hierarchical sequence labeling network. However, they ignore considering the latent segment structure of the document, in which contiguous sentences often have coherent semantics. In this paper, we proposed a span-based dynamic local attention model that could explicitly capture the structural information by the proposed supervised dynamic local attention. We further introduce an auxiliary task called span-based classification to explore the span-level representations. Extensive experiments show that our model achieves better or competitive performance against state-of-the-art baselines on two benchmark datasets.