Xiang Deng


2023

pdf
Roll Up Your Sleeves: Working with a Collaborative and Engaging Task-Oriented Dialogue System
Lingbo Mo | Shijie Chen | Ziru Chen | Xiang Deng | Ashley Lewis | Sunit Singh | Samuel Stevens | Chang-You Tai | Zhen Wang | Xiang Yue | Tianshu Zhang | Yu Su | Huan Sun
Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue

We introduce TacoBot, a user-centered task-oriented digital assistant designed to guide users through complex real-world tasks with multiple steps. Covering a wide range of cooking and how-to tasks, we aim to deliver a collaborative and engaging dialogue experience. Equipped with language understanding, dialogue management, and response generation components supported by a robust search engine, TacoBot ensures efficient task assistance. To enhance the dialogue experience, we explore a series of data augmentation strategies using LLMs to train advanced neural models continuously. TacoBot builds upon our successful participation in the inaugural Alexa Prize TaskBot Challenge, where our team secured third place among ten competing teams. We offer TacoBot as an open-source framework that serves as a practical example for deploying task-oriented dialogue systems.

pdf
Exploring Chain of Thought Style Prompting for Text-to-SQL
Chang-Yu Tai | Ziru Chen | Tianshu Zhang | Xiang Deng | Huan Sun
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In-context learning with large language models (LLMs) has recently caught increasing attention due to its superior few-shot performance on various tasks. However, its performance on text-to-SQL parsing still has much room for improvement. In this paper, we hypothesize that a crucial aspect of LLMs to improve for text-to-SQL parsing is their multi-step reasoning ability. Thus, we systematically study how to enhance LLMs’ reasoning ability through chain of thought (CoT) style prompting, including the original chain-of-thought prompting and least-to-most prompting. Our experiments demonstrate that iterative prompting as in least-to-most prompting may be unnecessary for text-to-SQL parsing, and using detailed reasoning steps tends to have more error propagation issues. Based on these findings, we propose a new CoT-style prompting method for text-to-SQL parsing. It brings 5.2 and 6.5 point absolute gains on the Spider development set and the Spider Realistic set, respectively, compared to the standard prompting method without reasoning steps; 2.4 and 1.5 point absolute gains, compared to the least-to-most prompting method.

pdf
Towards Understanding Chain-of-Thought Prompting: An Empirical Study of What Matters
Boshi Wang | Sewon Min | Xiang Deng | Jiaming Shen | You Wu | Luke Zettlemoyer | Huan Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Chain-of-Thought (CoT) prompting can dramatically improve the multi-step reasoning abilities of large language models (LLMs). CoT explicitly encourages the LLM to generate intermediate rationales for solving a problem, by providing a series of reasoning steps in the demonstrations. Despite its success, there is still little understanding of what makes CoT prompting effective and which aspects of the demonstrated reasoning steps contribute to its performance. In this paper, we show that CoT reasoning is possible even with invalid demonstrations - prompting with invalid reasoning steps can achieve over 80-90% of the performance obtained using CoT under various metrics, while still generating coherent lines of reasoning during inference. Further experiments show that other aspects of the rationales, such as being relevant to the query and correctly ordering the reasoning steps, are much more important for effective CoT reasoning. Overall, these findings both deepen our understanding of CoT prompting, and open up new questions regarding LLMs’ capability to learn to reason in context.

pdf
Don’t Generate, Discriminate: A Proposal for Grounding Language Models to Real-World Environments
Yu Gu | Xiang Deng | Yu Su
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A key missing capacity of current language models (LMs) is grounding to real-world environments. Most existing work for grounded language understanding uses LMs to directly generate plans that can be executed in the environment to achieve the desired effects. It thereby casts the burden of ensuring grammaticality, faithfulness, and controllability all on the LMs. We propose Pangu, a generic framework for grounded language understanding that capitalizes on the discriminative ability of LMs instead of their generative ability. Pangu consists of a symbolic agent and a neural LM working in a concerted fashion: The agent explores the environment to incrementally construct valid plans, and the LM evaluates the plausibility of the candidate plans to guide the search process. A case study on the challenging problem of knowledge base question answering (KBQA), which features a massive environment, demonstrates the remarkable effectiveness and flexibility of Pangu: A BERT-base LM is sufficient for setting a new record on standard KBQA datasets, and larger LMs further bring substantial gains.Pangu also enables, for the first time, effective few-shot in-context learning for KBQA with large LMs such as Codex.

2022

pdf
Iteratively Prompt Pre-trained Language Models for Chain of Thought
Boshi Wang | Xiang Deng | Huan Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

While Pre-trained Language Models (PLMs) internalize a great amount of world knowledge, they have been shown incapable of recalling these knowledge to solve tasks requiring complex & multi-step reasoning. Similar to how humans develop a “chain of thought” for these tasks, how can we equip PLMs with such abilities? In this work, we explore an iterative prompting framework, a new prompting paradigm which progressively elicits relevant knowledge from PLMs for multi-step inference. We identify key limitations of existing prompting methods, namely they are either restricted to queries with a single identifiable relation/predicate, or being agnostic to input contexts, which makes it difficult to capture variabilities across different inference steps. We propose an iterative context-aware prompter, which addresses these limitations by learning to dynamically synthesize prompts conditioned on the current step’s contexts. Experiments on three datasets involving multi-step reasoning show the effectiveness of the iterative scheme and the context-aware prompter design.

2021

pdf
ReasonBERT: Pre-trained to Reason with Distant Supervision
Xiang Deng | Yu Su | Alyssa Lees | You Wu | Cong Yu | Huan Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We present ReasonBert, a pre-training method that augments language models with the ability to reason over long-range relations and multiple, possibly hybrid contexts. Unlike existing pre-training methods that only harvest learning signals from local contexts of naturally occurring texts, we propose a generalized notion of distant supervision to automatically connect multiple pieces of text and tables to create pre-training examples that require long-range reasoning. Different types of reasoning are simulated, including intersecting multiple pieces of evidence, bridging from one piece of evidence to another, and detecting unanswerable cases. We conduct a comprehensive evaluation on a variety of extractive question answering datasets ranging from single-hop to multi-hop and from text-only to table-only to hybrid that require various reasoning capabilities and show that ReasonBert achieves remarkable improvement over an array of strong baselines. Few-shot experiments further demonstrate that our pre-training method substantially improves sample efficiency.

pdf
Structure-Grounded Pretraining for Text-to-SQL
Xiang Deng | Ahmed Hassan Awadallah | Christopher Meek | Oleksandr Polozov | Huan Sun | Matthew Richardson
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Learning to capture text-table alignment is essential for tasks like text-to-SQL. A model needs to correctly recognize natural language references to columns and values and to ground them in the given database schema. In this paper, we present a novel weakly supervised Structure-Grounded pretraining framework (STRUG) for text-to-SQL that can effectively learn to capture text-table alignment based on a parallel text-table corpus. We identify a set of novel pretraining tasks: column grounding, value grounding and column-value mapping, and leverage them to pretrain a text-table encoder. Additionally, to evaluate different methods under more realistic text-table alignment settings, we create a new evaluation set Spider-Realistic based on Spider dev set with explicit mentions of column names removed, and adopt eight existing text-to-SQL datasets for cross-database evaluation. STRUG brings significant improvement over BERTLARGE in all settings. Compared with existing pretraining methods such as GRAPPA, STRUG achieves similar performance on Spider, and outperforms all baselines on more realistic sets. All the code and data used in this work will be open-sourced to facilitate future research.

2019

pdf
Leveraging 2-hop Distant Supervision from Table Entity Pairs for Relation Extraction
Xiang Deng | Huan Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Distant supervision (DS) has been widely used to automatically construct (noisy) labeled data for relation extraction (RE). Given two entities, distant supervision exploits sentences that directly mention them for predicting their semantic relation. We refer to this strategy as 1-hop DS, which unfortunately may not work well for long-tail entities with few supporting sentences. In this paper, we introduce a new strategy named 2-hop DS to enhance distantly supervised RE, based on the observation that there exist a large number of relational tables on the Web which contain entity pairs that share common relations. We refer to such entity pairs as anchors for each other, and collect all sentences that mention the anchor entity pairs of a given target entity pair to help relation prediction. We develop a new neural RE method REDS2 in the multi-instance learning paradigm, which adopts a hierarchical model structure to fuse information respectively from 1-hop DS and 2-hop DS. Extensive experimental results on a benchmark dataset show that REDS2 can consistently outperform various baselines across different settings by a substantial margin.