New Intent Discovery (NID) aims to recognize both new and known intents from unlabeled data with the aid of limited labeled data containing only known intents. Without considering structure relationships between samples, previous methods generate noisy supervisory signals which cannot strike a balance between quantity and quality, hindering the formation of new intent clusters and effective transfer of the pre-training knowledge. To mitigate this limitation, we propose a novel Diffusion Weighted Graph Framework (DWGF) to capture both semantic similarities and structure relationships inherent in data, enabling more sufficient and reliable supervisory signals. Specifically, for each sample, we diffuse neighborhood relationships along semantic paths guided by the nearest neighbors for multiple hops to characterize its local structure discriminately. Then, we sample its positive keys and weigh them based on semantic similarities and local structures for contrastive learning. During inference, we further propose Graph Smoothing Filter (GSF) to explicitly utilize the structure relationships to filter high-frequency noise embodied in semantically ambiguous samples on the cluster boundary. Extensive experiments show that our method outperforms state-of-the-art models on all evaluation metrics across multiple benchmark datasets. Code and data will be made public.
Discovering fine-grained categories from coarsely labeled data is a practical and challenging task, which can bridge the gap between the demand for fine-grained analysis and the high annotation cost. Previous works mainly focus on instance-level discrimination to learn low-level features, but ignore semantic similarities between data, which may prevent these models learning compact cluster representations. In this paper, we propose Denoised Neighborhood Aggregation (DNA), a self-supervised framework that encodes semantic structures of data into the embedding space. Specifically, we retrieve k-nearest neighbors of a query as its positive keys to capture semantic similarities between data and then aggregate information from the neighbors to learn compact cluster representations, which can make fine-grained categories more separatable. However, the retrieved neighbors can be noisy and contain many false-positive keys, which can degrade the quality of learned embeddings. To cope with this challenge, we propose three principles to filter out these false neighbors for better representation learning. Furthermore, we theoretically justify that the learning objective of our framework is equivalent to a clustering loss, which can capture semantic similarities between data to form compact fine-grained clusters. Extensive experiments on three benchmark datasets show that our method can retrieve more accurate neighbors (21.31% accuracy improvement) and outperform state-of-the-art models by a large margin (average 9.96% improvement on three metrics). Our code and data are available at https://github.com/Lackel/DNA.
Novel category discovery aims at adapting models trained on known categories to novel categories. Previous works only focus on the scenario where known and novel categories are of the same granularity. In this paper, we investigate a new practical scenario called Fine-grained Category Discovery under Coarse-grained supervision (FCDC). FCDC aims at discovering fine-grained categories with only coarse-grained labeled data, which can adapt models to categories of different granularity from known ones and reduce significant labeling cost. It is also a challenging task since supervised training on coarse-grained categories tends to focus on inter-class distance (distance between coarse-grained classes) but ignore intra-class distance (distance between fine-grained sub-classes) which is essential for separating fine-grained categories. Considering most current methods cannot transfer knowledge from coarse-grained level to fine-grained level, we propose a hierarchical weighted self-contrastive network by building a novel weighted self-contrastive module and combining it with supervised learning in a hierarchical manner. Extensive experiments on public datasets show both effectiveness and efficiency of our model over compared methods.