Weiran Nie


2021

pdf
Robustness Testing of Language Understanding in Task-Oriented Dialog
Jiexi Liu | Ryuichi Takanobu | Jiaxin Wen | Dazhen Wan | Hongguang Li | Weiran Nie | Cheng Li | Wei Peng | Minlie Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Most language understanding models in task-oriented dialog systems are trained on a small amount of annotated training data, and evaluated in a small set from the same distribution. However, these models can lead to system failure or undesirable output when being exposed to natural language perturbation or variation in practice. In this paper, we conduct comprehensive evaluation and analysis with respect to the robustness of natural language understanding models, and introduce three important aspects related to language understanding in real-world dialog systems, namely, language variety, speech characteristics, and noise perturbation. We propose a model-agnostic toolkit LAUG to approximate natural language perturbations for testing the robustness issues in task-oriented dialog. Four data augmentation approaches covering the three aspects are assembled in LAUG, which reveals critical robustness issues in state-of-the-art models. The augmented dataset through LAUG can be used to facilitate future research on the robustness testing of language understanding in task-oriented dialog.

2020

pdf
metaCAT: A Metadata-based Task-oriented Chatbot Annotation Tool
Ximing Liu | Wei Xue | Qi Su | Weiran Nie | Wei Peng
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: System Demonstrations

Creating high-quality annotated dialogue corpora is challenging. It is essential to develop practical annotation tools to support humans in this time-consuming and error-prone task. We present metaCAT, which is an open-source web-based annotation tool designed specifically for developing task-oriented dialogue data. To the best of our knowledge, metaCAT is the first annotation tool that provides comprehensive metadata annotation coverage to the domain, intent, and span information. The data annotation quality is enhanced by a real-time annotation constraint-checking mechanism. An Automatic Speech Recognition (ASR) function is implemented to allow users to paraphrase and create more diversified annotated utterances. metaCAT is publicly available for the community.