Verrah Otiende


2023

pdf
Cross-lingual Open-Retrieval Question Answering for African Languages
Odunayo Ogundepo | Tajuddeen Gwadabe | Clara Rivera | Jonathan Clark | Sebastian Ruder | David Adelani | Bonaventure Dossou | Abdou Diop | Claytone Sikasote | Gilles Hacheme | Happy Buzaaba | Ignatius Ezeani | Rooweither Mabuya | Salomey Osei | Chris Emezue | Albert Kahira | Shamsuddeen Muhammad | Akintunde Oladipo | Abraham Owodunni | Atnafu Tonja | Iyanuoluwa Shode | Akari Asai | Anuoluwapo Aremu | Ayodele Awokoya | Bernard Opoku | Chiamaka Chukwuneke | Christine Mwase | Clemencia Siro | Stephen Arthur | Tunde Ajayi | Verrah Otiende | Andre Rubungo | Boyd Sinkala | Daniel Ajisafe | Emeka Onwuegbuzia | Falalu Lawan | Ibrahim Ahmad | Jesujoba Alabi | Chinedu Mbonu | Mofetoluwa Adeyemi | Mofya Phiri | Orevaoghene Ahia | Ruqayya Iro | Sonia Adhiambo
Findings of the Association for Computational Linguistics: EMNLP 2023

African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems – those that retrieve answer content from other languages while serving people in their native language—offer a means of filling this gap. To this end, we create Our Dataset, the first cross-lingual QA dataset with a focus on African languages. Our Dataset includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, Our Dataset focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, Our Dataset proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.

2021

pdf
MasakhaNER: Named Entity Recognition for African Languages
David Ifeoluwa Adelani | Jade Abbott | Graham Neubig | Daniel D’souza | Julia Kreutzer | Constantine Lignos | Chester Palen-Michel | Happy Buzaaba | Shruti Rijhwani | Sebastian Ruder | Stephen Mayhew | Israel Abebe Azime | Shamsuddeen H. Muhammad | Chris Chinenye Emezue | Joyce Nakatumba-Nabende | Perez Ogayo | Aremu Anuoluwapo | Catherine Gitau | Derguene Mbaye | Jesujoba Alabi | Seid Muhie Yimam | Tajuddeen Rabiu Gwadabe | Ignatius Ezeani | Rubungo Andre Niyongabo | Jonathan Mukiibi | Verrah Otiende | Iroro Orife | Davis David | Samba Ngom | Tosin Adewumi | Paul Rayson | Mofetoluwa Adeyemi | Gerald Muriuki | Emmanuel Anebi | Chiamaka Chukwuneke | Nkiruka Odu | Eric Peter Wairagala | Samuel Oyerinde | Clemencia Siro | Tobius Saul Bateesa | Temilola Oloyede | Yvonne Wambui | Victor Akinode | Deborah Nabagereka | Maurice Katusiime | Ayodele Awokoya | Mouhamadane MBOUP | Dibora Gebreyohannes | Henok Tilaye | Kelechi Nwaike | Degaga Wolde | Abdoulaye Faye | Blessing Sibanda | Orevaoghene Ahia | Bonaventure F. P. Dossou | Kelechi Ogueji | Thierno Ibrahima DIOP | Abdoulaye Diallo | Adewale Akinfaderin | Tendai Marengereke | Salomey Osei
Transactions of the Association for Computational Linguistics, Volume 9

We take a step towards addressing the under- representation of the African continent in NLP research by bringing together different stakeholders to create the first large, publicly available, high-quality dataset for named entity recognition (NER) in ten African languages. We detail the characteristics of these languages to help researchers and practitioners better understand the challenges they pose for NER tasks. We analyze our datasets and conduct an extensive empirical evaluation of state- of-the-art methods across both supervised and transfer learning settings. Finally, we release the data, code, and models to inspire future research on African NLP.1
Search
Co-authors
Venues