Tushar Tomar
2023
Benchmarking and Improving Text-to-SQL Generation under Ambiguity
Adithya Bhaskar
|
Tushar Tomar
|
Ashutosh Sathe
|
Sunita Sarawagi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Research in Text-to-SQL conversion has been largely benchmarked against datasets where each text query corresponds to one correct SQL. However, natural language queries over real-life databases frequently involve significant ambiguity about the intended SQL due to overlapping schema names and multiple confusing relationship paths. To bridge this gap, we develop a novel benchmark called AmbiQT with over 3000 examples where each text is interpretable as two plausible SQLs due to lexical and/or structural ambiguity. When faced with ambiguity, an ideal top-k decoder should generate all valid interpretations for possible disambiguation by the user. We evaluate several Text-to-SQL systems and decoding algorithms, including those employing state-of-the-art LLMs, and find them to be far from this ideal. The primary reason is that the prevalent beam search algorithm and its variants, treat SQL queries as a string and produce unhelpful token-level diversity in the top-k. We propose LogicalBeam, a new decoding algorithm that navigates the SQL logic space using a blend of plan-based template generation and constrained infilling. Counterfactually generated plans diversify templates while in-filling with a beam-search that branches solely on schema names provides value diversity. LogicalBeam is up to 2.5 times more effective than state-of-the-art models at generating all candidate SQLs in the top-k ranked outputs. It also enhances the top-5 Exact and Execution Match Accuracies on SPIDER and Kaggle DBQA.
2022
Quality Scoring of Source Words in Neural Translation Models
Priyesh Jain
|
Sunita Sarawagi
|
Tushar Tomar
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Word-level quality scores on input source sentences can provide useful feedback to an end-user when translating into an unfamiliar target language. Recent approaches either require training special word-scoring models based on synthetic data or require repeated invocation of the translation model. We propose a simple approach based on comparing the difference of probabilities from two language models. The basic premise of our method is to reason how well each source word is explained by the target sentence as against the source language model. Our approach provides up to five points higher F1 scores and is significantly faster than the state of the art methods on three language pairs. Also, our method does not require training any new model. We release a public dataset on word omissions and mistranslations on a new language pair.
Search