A proven therapeutic technique to overcome negative thoughts is to replace them with a more hopeful “reframed thought.” Although therapy can help people practice and learn this Cognitive Reframing of Negative Thoughts, clinician shortages and mental health stigma commonly limit people’s access to therapy. In this paper, we conduct a human-centered study of how language models may assist people in reframing negative thoughts. Based on psychology literature, we define a framework of seven linguistic attributes that can be used to reframe a thought. We develop automated metrics to measure these attributes and validate them with expert judgements from mental health practitioners. We collect a dataset of 600 situations, thoughts and reframes from practitioners and use it to train a retrieval-enhanced in-context learning model that effectively generates reframed thoughts and controls their linguistic attributes. To investigate what constitutes a “high-quality” reframe, we conduct an IRB-approved randomized field study on a large mental health website with over 2,000 participants. Amongst other findings, we show that people prefer highly empathic or specific reframes, as opposed to reframes that are overly positive. Our findings provide key implications for the use of LMs to assist people in overcoming negative thoughts.
Mental health stigma prevents many individuals from receiving the appropriate care, and social psychology studies have shown that mental health tends to be overlooked in men. In this work, we investigate gendered mental health stigma in masked language models. In doing so, we operationalize mental health stigma by developing a framework grounded in psychology research: we use clinical psychology literature to curate prompts, then evaluate the models’ propensity to generate gendered words. We find that masked language models capture societal stigma about gender in mental health: models are consistently more likely to predict female subjects than male in sentences about having a mental health condition (32% vs. 19%), and this disparity is exacerbated for sentences that indicate treatment-seeking behavior. Furthermore, we find that different models capture dimensions of stigma differently for men and women, associating stereotypes like anger, blame, and pity more with women with mental health conditions than with men. In showing the complex nuances of models’ gendered mental health stigma, we demonstrate that context and overlapping dimensions of identity are important considerations when assessing computational models’ social biases.
Deceptive news posts shared in online communities can be detected with NLP models, and much recent research has focused on the development of such models. In this work, we use characteristics of online communities and authors — the context of how and where content is posted — to explain the performance of a neural network deception detection model and identify sub-populations who are disproportionately affected by model accuracy or failure. We examine who is posting the content, and where the content is posted to. We find that while author characteristics are better predictors of deceptive content than community characteristics, both characteristics are strongly correlated with model performance. Traditional performance metrics such as F1 score may fail to capture poor model performance on isolated sub-populations such as specific authors, and as such, more nuanced evaluation of deception detection models is critical.
Empathy is critical to successful mental health support. Empathy measurement has predominantly occurred in synchronous, face-to-face settings, and may not translate to asynchronous, text-based contexts. Because millions of people use text-based platforms for mental health support, understanding empathy in these contexts is crucial. In this work, we present a computational approach to understanding how empathy is expressed in online mental health platforms. We develop a novel unifying theoretically-grounded framework for characterizing the communication of empathy in text-based conversations. We collect and share a corpus of 10k (post, response) pairs annotated using this empathy framework with supporting evidence for annotations (rationales). We develop a multi-task RoBERTa-based bi-encoder model for identifying empathy in conversations and extracting rationales underlying its predictions. Experiments demonstrate that our approach can effectively identify empathic conversations. We further apply this model to analyze 235k mental health interactions and show that users do not self-learn empathy over time, revealing opportunities for empathy training and feedback.
Mental illness is one of the most pressing public health issues of our time. While counseling and psychotherapy can be effective treatments, our knowledge about how to conduct successful counseling conversations has been limited due to lack of large-scale data with labeled outcomes of the conversations. In this paper, we present a large-scale, quantitative study on the discourse of text-message-based counseling conversations. We develop a set of novel computational discourse analysis methods to measure how various linguistic aspects of conversations are correlated with conversation outcomes. Applying techniques such as sequence-based conversation models, language model comparisons, message clustering, and psycholinguistics-inspired word frequency analyses, we discover actionable conversation strategies that are associated with better conversation outcomes.