The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote’n’Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote’n’Rank’s procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
It is often difficult to reliably evaluate models which generate text. Among them, text style transfer is a particularly difficult to evaluate, because its success depends on a number of parameters. We conduct an evaluation of a large number of models on a detoxification task. We explore the relations between the manual and automatic metrics and find that there is only weak correlation between them, which is dependent on the type of model which generated text. Automatic metrics tend to be less reliable for better-performing models. However, our findings suggest that, ChrF and BertScore metrics can be used as a proxy for human evaluation of text detoxification to some extent.
The General QA field has been developing the methodology referencing the Stanford Question answering dataset (SQuAD) as the significant benchmark. Compiling factual questions datasets requires manual annotations, limiting the training data’s potential size. We present the WikiOmnia dataset, a new publicly available set of QA pairs and corresponding Russian Wikipedia article summary sections, composed with a fully automated generation and filtration pipeline. To ensure high quality of generated QA pairs, diverse manual and automated evaluation techniques were applied. The WikiOmnia pipeline is available open-source and is also tested for creating SQuAD-formatted QA on other domains, like news texts, fiction, and social media. The resulting dataset includes two parts: raw data on the whole Russian Wikipedia (7,930,873 QA pairs with paragraphs for ruGPT-3 XL and 7,991,040 QA pairs with paragraphs for ruT5-large) and cleaned data with strict automatic verification (over 160,000 QA pairs with paragraphs for ruGPT-3 XL and over 3,400,000 QA pairs with paragraphs for ruT5-large).
Linguistic analysis of language models is one of the ways to explain and describe their reasoning, weaknesses, and limitations. In the probing part of the model interpretability research, studies concern individual languages as well as individual linguistic structures. The question arises: are the detected regularities linguistically coherent, or on the contrary, do they dissonate at the typological scale? Moreover, the majority of studies address the inherent set of languages and linguistic structures, leaving the actual typological diversity knowledge out of scope. In this paper, we present and apply the GUI-assisted framework allowing us to easily probe massive amounts of languages for all the morphosyntactic features present in the Universal Dependencies data. We show that reflecting the anglo-centric trend in NLP over the past years, most of the regularities revealed in the mBERT model are typical for the western-European languages. Our framework can be integrated with the existing probing toolboxes, model cards, and leaderboards, allowing practitioners to use and share their familiar probing methods to interpret multilingual models. Thus we propose a toolkit to systematize the multilingual flaws in multilingual models, providing a reproducible experimental setup for 104 languages and 80 morphosyntactic features.
Today, natural language processing heavily relies on pre-trained large language models. Even though such models are criticized for the poor interpretability, they still yield state-of-the-art solutions for a wide set of very different tasks. While lots of probing studies have been conducted to measure the models’ awareness of grammatical knowledge, semantic probing is less popular. In this work, we introduce the probing pipeline to study the representedness of semantic relations in transformer language models. We show that in this task, attention scores are nearly as expressive as the layers’ output activations, despite their lesser ability to represent surface cues. This supports the hypothesis that attention mechanisms are focusing not only on the syntactic relational information but also on the semantic one.
Recent advances in zero-shot and few-shot learning have shown promise for a scope of research and practical purposes. However, this fast-growing area lacks standardized evaluation suites for non-English languages, hindering progress outside the Anglo-centric paradigm. To address this line of research, we propose TAPE (Text Attack and Perturbation Evaluation), a novel benchmark that includes six more complex NLU tasks for Russian, covering multi-hop reasoning, ethical concepts, logic and commonsense knowledge. The TAPE’s design focuses on systematic zero-shot and few-shot NLU evaluation: (i) linguistic-oriented adversarial attacks and perturbations for analyzing robustness, and (ii) subpopulations for nuanced interpretation. The detailed analysis of testing the autoregressive baselines indicates that simple spelling-based perturbations affect the performance the most, while paraphrasing the input has a more negligible effect. At the same time, the results demonstrate a significant gap between the neural and human baselines for most tasks. We publicly release TAPE (https://tape-benchmark.com) to foster research on robust LMs that can generalize to new tasks when little to no supervision is available.
Artificial General Intelligence (AGI) is showing growing performance in numerous applications - beating human performance in Chess and Go, using knowledge bases and text sources to answer questions (SQuAD) and even pass human examination (Aristo project). In this paper, we describe the results of AI Journey, a competition of AI-systems aimed to improve AI performance on knowledge bases, reasoning and text generation. Competing systems pass the final native language exam (in Russian), including versatile grammar tasks (test and open questions) and an essay, achieving a high score of 69%, with 68% being an average human result. During the competition, a baseline for the task and essay parts was proposed, and 80+ systems were submitted, showing different approaches to task understanding and reasoning. All the data and solutions can be found on github https://github.com/sberbank-ai/combined_solution_aij2019
In this paper, we introduce an advanced Russian general language understanding evaluation benchmark – Russian SuperGLUE. Recent advances in the field of universal language models and transformers require the development of a methodology for their broad diagnostics and testing for general intellectual skills - detection of natural language inference, commonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first time, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from scratch for the Russian language. We also provide baselines, human level evaluation, open-source framework for evaluating models, and an overall leaderboard of transformer models for the Russian language. Besides, we present the first results of comparing multilingual models in the translated diagnostic test set and offer the first steps to further expanding or assessing State-of-the-art models independently of language.
This paper provides a comprehensive overview of the gapping dataset for Russian that consists of 7.5k sentences with gapping (as well as 15k relevant negative sentences) and comprises data from various genres: news, fiction, social media and technical texts. The dataset was prepared for the Automatic Gapping Resolution Shared Task for Russian (AGRR-2019) - a competition aimed at stimulating the development of NLP tools and methods for processing of ellipsis. In this paper, we pay special attention to the gapping resolution methods that were introduced within the shared task as well as an alternative test set that illustrates that our corpus is a diverse and representative subset of Russian language gapping sufficient for effective utilization of machine learning techniques.