Tarek Naous


2023

pdf
Revisiting non-English Text Simplification: A Unified Multilingual Benchmark
Michael Ryan | Tarek Naous | Wei Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in high-quality, large-scale English resources have pushed the frontier of English Automatic Text Simplification (ATS) research. However, less work has been done on multilingual text simplification due to the lack of a diverse evaluation benchmark that covers complex-simple sentence pairs in many languages. This paper introduces the MultiSim benchmark, a collection of 27 resources in 12 distinct languages containing over 1.7 million complex-simple sentence pairs. This benchmark will encourage research in developing more effective multilingual text simplification models and evaluation metrics. Our experiments using MultiSim with pre-trained multilingual language models reveal exciting performance improvements from multilingual training in non-English settings. We observe strong performance from Russian in zero-shot cross-lingual transfer to low-resource languages. We further show that few-shot prompting with BLOOM-176b achieves comparable quality to reference simplifications outperforming fine-tuned models in most languages. We validate these findings through human evaluation.

2022

pdf
Stanceosaurus: Classifying Stance Towards Multicultural Misinformation
Jonathan Zheng | Ashutosh Baheti | Tarek Naous | Wei Xu | Alan Ritter
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present Stanceosaurus, a new corpus of 28,033 tweets in English, Hindi and Arabic annotated with stance towards 250 misinformation claims. As far as we are aware, it is the largest corpus annotated with stance towards misinformation claims. The claims in Stanceosaurus originate from 15 fact-checking sources that cover diverse geographical regions and cultures. Unlike existing stance datasets, we introduce a more fine-grained 5-class labeling strategy with additional subcategories to distinguish implicit stance. Pre-trained transformer-based stance classifiers that are fine-tuned on our corpus show good generalization on unseen claims and regional claims from countries outside the training data. Cross-lingual experiments demonstrate Stanceosaurus’ capability of training multilingual models, achieving 53.1 F1 on Hindi and 50.4 F1 on Arabic without any target-language fine-tuning. Finally, we show how a domain adaptation method can be used to improve performance on Stanceosaurus using additional RumourEval-2019 data. We will make Stanceosaurus publicly available to the research community upon publication and hope it will encourage further work on misinformation identification across languages and cultures.

2021

pdf
Empathetic BERT2BERT Conversational Model: Learning Arabic Language Generation with Little Data
Tarek Naous | Wissam Antoun | Reem Mahmoud | Hazem Hajj
Proceedings of the Sixth Arabic Natural Language Processing Workshop

Enabling empathetic behavior in Arabic dialogue agents is an important aspect of building human-like conversational models. While Arabic Natural Language Processing has seen significant advances in Natural Language Understanding (NLU) with language models such as AraBERT, Natural Language Generation (NLG) remains a challenge. The shortcomings of NLG encoder-decoder models are primarily due to the lack of Arabic datasets suitable to train NLG models such as conversational agents. To overcome this issue, we propose a transformer-based encoder-decoder initialized with AraBERT parameters. By initializing the weights of the encoder and decoder with AraBERT pre-trained weights, our model was able to leverage knowledge transfer and boost performance in response generation. To enable empathy in our conversational model, we train it using the ArabicEmpatheticDialogues dataset and achieve high performance in empathetic response generation. Specifically, our model achieved a low perplexity value of 17.0 and an increase in 5 BLEU points compared to the previous state-of-the-art model. Also, our proposed model was rated highly by 85 human evaluators, validating its high capability in exhibiting empathy while generating relevant and fluent responses in open-domain settings.

2020

pdf
Empathy-driven Arabic Conversational Chatbot
Tarek Naous | Christian Hokayem | Hazem Hajj
Proceedings of the Fifth Arabic Natural Language Processing Workshop

Conversational models have witnessed a significant research interest in the last few years with the advancements in sequence generation models. A challenging aspect in developing human-like conversational models is enabling the sense of empathy in bots, making them infer emotions from the person they are interacting with. By learning to develop empathy, chatbot models are able to provide human-like, empathetic responses, thus making the human-machine interaction close to human-human interaction. Recent advances in English use complex encoder-decoder language models that require large amounts of empathetic conversational data. However, research has not produced empathetic bots for Arabic. Furthermore, there is a lack of Arabic conversational data labeled with empathy. To address these challenges, we create an Arabic conversational dataset that comprises empathetic responses. However, the dataset is not large enough to develop very complex encoder-decoder models. To address the limitation of data scale, we propose a special encoder-decoder composed of a Long Short-Term Memory (LSTM) Sequence-to-Sequence (Seq2Seq) with Attention. The experiments showed success of our proposed empathy-driven Arabic chatbot in generating empathetic responses with a perplexity of 38.6, an empathy score of 3.7, and a fluency score of 3.92.