Visual Word Sense Disambiguation (VWSD) is a task to find the image that most accurately depicts the correct sense of the target word for the given context. Previously, image-text matching models often suffered from recognizing polysemous words. This paper introduces an unsupervised VWSD approach that uses gloss information of an external lexical knowledge-base, especially the sense definitions. Specifically, we suggest employing Bayesian inference to incorporate the sense definitions when sense information of the answer is not provided. In addition, to ameliorate the out-of-dictionary (OOD) issue, we propose a context-aware definition generation with GPT-3. Experimental results show that the VWSD performance significantly increased with our Bayesian inference-based approach. In addition, our context-aware definition generation achieved prominent performance improvement in OOD examples exhibiting better performance than the existing definition generation method.
In this paper, we introduce CR-COPEC called Causal Rationale of Corporate Performance Changes from financial reports. This is a comprehensive large-scale domain-adaptation causal sentence dataset to detect financial performance changes of corporate. CR-COPEC contributes to two major achievements. First, it detects causal rationale from 10-K annual reports of the U.S. companies, which contain experts’ causal analysis following accounting standards in a formal manner. This dataset can be widely used by both individual investors and analysts as material information resources for investing and decision-making without tremendous effort to read through all the documents. Second, it carefully considers different characteristics which affect the financial performance of companies in twelve industries. As a result, CR-COPEC can distinguish causal sentences in various industries by taking unique narratives in each industry into consideration. We also provide an extensive analysis of how well CR-COPEC dataset is constructed and suited for classifying target sentences as causal ones with respect to industry characteristics.
This paper proposes a new natural language processing (NLP) application for identifying medical jargon terms potentially difficult for patients to comprehend from electronic health record (EHR) notes. We first present a novel and publicly available dataset with expert-annotated medical jargon terms from 18K+ EHR note sentences (MedJ). Then, we introduce a novel medical jargon extraction (MedJEx) model which has been shown to outperform existing state-of-the-art NLP models. First, MedJEx improved the overall performance when it was trained on an auxiliary Wikipedia hyperlink span dataset, where hyperlink spans provide additional Wikipedia articles to explain the spans (or terms), and then fine-tuned on the annotated MedJ data. Secondly, we found that a contextualized masked language model score was beneficial for detecting domain-specific unfamiliar jargon terms. Moreover, our results show that training on the auxiliary Wikipedia hyperlink span datasets improved six out of eight biomedical named entity recognition benchmark datasets. MedJEx is publicly available.
A domain specific question answering (QA) dataset dramatically improves the machine comprehension performance. This paper presents a new Global Banking Standards QA dataset (GBS-QA) in the banking regulation domain. The GBS-QA has three values. First, it contains actual questions from market players and answers from global rule setter, the Basel Committee on Banking Supervision (BCBS) in the middle of creating and revising banking regulations. Second, financial regulation experts analyze and verify pairs of questions and answers in the annotation process. Lastly, the GBS-QA is a totally different dataset with existing datasets in finance and is applicable to stimulate transfer learning research in the banking regulation domain.
Word sense disambiguation (WSD) is the task to determine the word sense according to its context. Many existing WSD studies have been using an external knowledge-based unsupervised approach because it has fewer word set constraints than supervised approaches requiring training data. In this paper, we propose a new WSD method to generate the context of an ambiguous word by using similarities between an ambiguous word and words in the input document. In addition, to leverage our WSD method, we further propose a new word similarity calculation method based on the semantic network structure of BabelNet. We evaluate the proposed methods on the SemEval-13 and SemEval-15 for English WSD dataset. Experimental results demonstrate that the proposed WSD method significantly improves the baseline WSD method. Furthermore, our WSD system outperforms the state-of-the-art WSD systems in the Semeval-13 dataset. Finally, it has higher performance than the state-of-the-art unsupervised knowledge-based WSD system in the average performance of both datasets.
Biomedical Named Entity (NE) recognition is a core technique for various works in the biomedical domain. In previous studies, using machine learning algorithm shows better performance than dictionary-based and rule-based approaches because there are too many terminological variations of biomedical NEs and new biomedical NEs are constantly generated. To achieve the high performance with a machine-learning algorithm, good-quality corpora are required. However, it is difficult to obtain the good-quality corpora because an-notating a biomedical corpus for ma-chine-learning is extremely time-consuming and costly. In addition, most previous corpora are insufficient for high-level tasks because they cannot cover various domains. Therefore, we propose a method for generating a large amount of machine-labeled data that covers various domains. To generate a large amount of machine-labeled data, firstly we generate an initial machine-labeled data by using a chunker and MetaMap. The chunker is developed to extract only biomedical NEs with manually annotated data. MetaMap is used to annotate the category of bio-medical NE. Then we apply the self-training approach to bootstrap the performance of initial machine-labeled data. In our experiments, the biomedical NE recognition system that is trained with our proposed machine-labeled data achieves much high performance. As a result, our system outperforms biomedical NE recognition system that using MetaMap only with 26.03%p improvements on F1-score.