Si-Qing Chen
Also published as: Si-qing Chen
2023
Gatekeeper to save COGS and improve efficiency of Text Prediction
Nidhi Tiwari
|
Sneha Kola
|
Milos Milunovic
|
Si-qing Chen
|
Marjan Slavkovski
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
The text prediction (TP) workflow calls a Large Language Model (LLM), almost, after every character to get subsequent sequence of characters, till user accepts a suggestion. The confidence score of the prediction is commonly used for filtering the results to ensure that only correct predictions are shown to user. As LLMs require massive amounts of computation and storage, such an approach incurs network and high execution cost. So, we propose a Model gatekeeper (GK) to stop the LLM calls that will result in incorrect predictions at client application level itself. This way a GK can save cost of model inference and improve user experience by not showing the incorrect predictions. We demonstrate that use of a model gatekeeper saved approx 46.6% of COGS for TP, at the cost of approx 4.5% loss in character saving. Use of GK also improved the efficiency (suggestion rate) of TP model by 73%.
Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation
Heming Xia
|
Tao Ge
|
Peiyi Wang
|
Si-Qing Chen
|
Furu Wei
|
Zhifang Sui
Findings of the Association for Computational Linguistics: EMNLP 2023
We propose Speculative Decoding (SpecDec), for the first time ever, to formally study exploiting the idea of speculative execution to accelerate autoregressive (AR) decoding. Speculative Decoding has two innovations: Spec-Drafter – an independent model specially optimized for efficient and accurate drafting – and Spec-Verification – a reliable method for verifying the drafted tokens efficiently in the decoding paradigm. Experimental results on various seq2seq tasks including machine translation and abstractive summarization show our approach can achieve around 5x speedup for the popular Transformer architectures with comparable generation quality to beam search decoding, refreshing the impression that the draft-then-verify paradigm introduces only 1.4x~2x speedup. In addition to the remarkable speedup, we also demonstrate 3 additional advantages of SpecDec, revealing its practical value for accelerating generative models in real-world applications. Our models and codes are available at https://github.com/hemingkx/SpecDec.
2022
EdgeFormer: A Parameter-Efficient Transformer for On-Device Seq2seq Generation
Tao Ge
|
Si-Qing Chen
|
Furu Wei
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
We introduce EdgeFormer – a parameter-efficient Transformer for on-device seq2seq generation under the strict computation and memory constraints. Compared with the previous parameter-efficient Transformers, EdgeFormer applies two novel principles for cost-effective parameterization, allowing it to perform better given the same parameter budget; moreover, EdgeFormer is further enhanced by layer adaptation innovation that is proposed for improving the network with shared layers. Extensive experiments show EdgeFormer can effectively outperform previous parameter-efficient Transformer baselines and achieve competitive results under both the computation and memory constraints. Given the promising results, we release EdgeLM – the pretrained version of EdgeFormer, which is the first publicly available pretrained on-device seq2seq model that can be easily fine-tuned for seq2seq tasks with strong results, facilitating on-device seq2seq generation in practice.
Search
Co-authors
- Tao Ge 2
- Furu Wei 2
- Nidhi Tiwari 1
- Sneha Kola 1
- Milos Milunovic 1
- show all...